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Rain Detection in the West African Sahel
using Deep Learning on Satellite Imagery

T.J. Siebring
VU Amsterdam and University of Amsterdam

ABSTRACT
This study assesses the ability of a Deep Learningmodel
to detect daytime rainfall in the West African Sahel us-
ing satellite imagery and ground observations. Speci�-
cally, we explore the e�ects of including various data
sources as model inputs. The results show that best
performance is achieved when information from both
the infrared and near-visible spectrum are utilized.

KEYWORDS
Rain gauge; rain detection; deep learning; MSG SEVIRI;
TAHMO; West Africa; convolutional neural network.

1 INTRODUCTION
A signi�cant portion of the population in West Africa
relies on subsistence farming, with agriculture predom-
inantly rain-fed. This reliance is especially pronounced
in the Sahel region, which has a single annual rain sea-
son. The timing of crop planting is therefore crucial,
as the soil has been desiccated by the preceding dry
season. For the seeds to take root, su�cient rainfall
is necessary, in particular during the �rst days after
seeding.
Weather agencies in the region typically use large-

scale global models employing Numerical Weather Pre-
diction (NWP) for forecasting. However, these models
are primarily calibrated using data frommore moderate
climates, leading to inherent biases when applied to the
extreme weather patterns of the Sahel, such as its north-
south gradient. Sun et al. [23] provides a comprehensive
evaluation of global rainfall products, identifying sig-
ni�cant discrepancies in regions with sparse meteoro-
logical measurements. A region mentioned speci�cally
is North Africa, which is known for its warm clouds -
a cloud type that complicates rainfall estimation [13].
Calibration of these models using local data is there-
fore essential. However, this process is hindered by the
limited availability of meteorological equipment as it is
a low-resource environment.

Satellite-based precipitation products are widely used
across the African continent. While these products
demonstrate reasonable accuracy at dekadal (10-day)
and monthly timescales, their performance on a daily
basis is inadequate, as noted by [3 14 20]. This limita-
tion signi�cantly reduces their utility for local farmers,
who require precise daily forecasts to make informed
agricultural decisions.
To battle the data scarcity problem, the Trans-African

Hydro-Meteorological Observatory (TAHMO) [25] was
set up. A prototype of an acoustic disdrometer was de-
veloped in the Netherlands, which can be produced for
less than one percent of the cost of a commercial equiv-
alent with the same speci�cations [24]. Since inception,
more than 500 stations have been installed throughout
Africa, and �ve minute precipitation is automatically
gathered in combination with many other variables.
This is a signi�cant improvement in terms of local data
availability and quality in comparison to daily collected
rainfall.
Estébanez-Camarena et al. [5] published a promising

paper making use of this data for three hourly rain-
fall detection. The authors train a self designed Deep
Learning (DL) model on eight TAHMO rain gauges in
Northern Ghana. The model input is infrared radiation
(IR) images from the Spinning Enhanced Visible and
IR Imager (SEVIRI) instrument - a device onboard the
Meteosat Second Generation (MSG) satellite that is com-
monly used for meteorological purposes. In a follow up
work, the authors perform a similar analysis including
another type of IR radiation. With these two input chan-
nels, they were able to achieve a rainfall Probability of
Detection (POD) of 67 percent and False Alarm Ratio
(FAR) of 59 percent [4]. This clearly demonstrates the
potential of using satellite imagery for rainfall detection
in West Africa.
In this study, we follow up on this work by:
• using ten input channels: two IR channels used
by Estébanez-Camarena et al. [5], and eight other
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channels commonly used in literature - seven IR
and one visible and near infrared (VNIR);

• reducing the time step from three hours to one
hour;

• studying the West African Sahel, including the
North Ghanian gauges;

• increasing the study period from 2018-2020 to
2018-2022;

• applying a widely used DL architecture for image
classi�cation.

The goal of these potential improvements is to answer
the research questions:
(1) Can the benchmark for rainfall detection in the

West African Sahel be improved by incorporating
additional data sources?

(2) Will this be enough to help farmers in the West
African Sahel with their decision making process?

2 DATA
2.1 TAHMO Rain Gauges
TAHMO provided hourly rain data for 61 stations in
West Africa for the period July 2018 to December 2022.
The locations corresponding to the TAHMO weather
stations are displayed in Figure 1. As the study area
covers multiple time zones, timestamps were adjusted
accordingly.

Figure 1: Locations corresponding to TAHMO
weather stations in data set.

Due to signi�cant variation in data availability across
stations, we established a minimum threshold of 20 per-
cent, resulting in a total of 51 stations being included
in the analysis. All subsequent metrics are based on
this selection. 20 percent is a relatively low threshold,
and 51 stations represent a modest number of gauges

for such a large region, which becomes particularly evi-
dent when compared to studies conducted in the Global
North. For instance, Moraux et al. [16] utilized 1,176
high-availability gauges for their research in Germany,
Belgium, and the Netherlands - a region much smaller
than our study area. This comparison underscores the
importance of both a high number of gauges and high
quality data for each gauge, which is common in the
Global North but rare on the African continent. Figure
3 illustrates data availability, sorted from high to low.
Increasing the threshold to 50 or 80 percent would sig-
ni�cantly reduce the number of gauges available for
analysis. All missing data have been excluded from the
dataset.

Figure 2: Logarithmic frequency distribution of
measured rainfall in mm/h.

For each weather station, precipitation in mm per
hour is available, amongst other variables such as longi-
tude, latitude and elevation. As the goal is to detect rain,
we need to decide upon a threshold for rain/no-rain.
Figure 2 shows the logarithmic frequency distribution
for a selection of nine gauges. No clear cuto� point can
be observed, so we decide to use a threshold of 0.4mm/h
for data preparation. However, we maintain the origi-
nal rainfall rate for future analysis for each data point.
Using this threshold, we obtain a ratio rain:no-rain of
1:49. In Section 3.1 we discuss how we preprocess this
severely skewed data set.
To include temporal information, the transformations

(1) and (2) are applied to the daily and yearly time stamp,
ensuring continuity. We prefer the cosine over sine
as the daily and yearly extremes are reached around
00:00, 12:00, and January, July, respectively. The 0.5 is
included to ensure we take the middle of the hour and
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Figure 3: Data availability for TAHMO stations with at least 20% data, sorted from high to low availability.

day, respectively. The 2c is evidently added to convert
the ratio to radians. Lastly, 30~B_8=_~40A was used to
account for the extra day in 2020.

C8<4_> 5 _30~ = 2>B


2c · ⌘>DA_> 5 _30~ + 0.5

24

�
(1)

C8<4_> 5 _~40A = 2>B


2c · 30~_> 5 _~40A � 0.5

30~B_8=_~40A

�
(2)

2.2 SEVIRI Satellite Images
Level 1.5 images are used from the SEVIRI instrument.
It has twelve spectral channels, eight of which are in the
IR region of the electromagnetic spectrum. These can
provide information on temperature of objects such as
clouds, amongst other things. The imaging component
of the instrument spins at 100 rpm, scanning the earth
one slice at a time. Every twelve minutes the device
goes from south to north, after which it takes three
minutes to adjust south again. Therefore, the temporal
resolution is �fteen minutes. The spatial resolution is
3x3km per pixel at nadir. As the nadir is located at lati-
tude 0 and longitude 0, and the proximity of our study

area to this point, for practical purposes our spatial res-
olution is also 3x3km. All processing of SEVIRI images
is performed using the Python library Satpy.
The purpose of using satellite images is to get infor-

mation about low level clouds, as these can produce rain.
Therefore, images that are sensitive to radiation with a
large atmospheric transmissivity are desired, as these
have the highest probability of containing information
about clouds producing rainfall. For the SEVIRI instru-
ment, the 10.8 micron channel is therefore commonly
used [10].
Estébanez-Camarena et al. [5] solely uses this chan-

nel in their original work, only to add the 7.3 micron
channel in their follow up study, as it interacts with
water vapour (WV) [4]. There is one other SEVIRI WV
channel of 6.2 micron - located in the middle of the WV
absorption band. The authors therefore argue that the
7.3 channel is more suited for rainfall estimation, as
it has a larger WV transmissivity. In contrast, Moraux
et al. [16] decided to use the 8.7 and 12.0 besides the 10.8
channel, as these three channels are well-known to be
related to cloud top particle size, temperature and cloud
optical thickness [12]. To better understand the in�u-
ence of these channels, all four channels are included in
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this research. In particular, their corresponding Bright-
ness Temperatures (BT) [21] are extracted.
Additionally, the RGB composite Desert Dust is in-

cluded, which could be relevant in our study area right
below the Sahara desert [1]. Its primary aim is detect-
ing dust in the atmosphere, and it is a function of the
8.7, 10.8 and 12.0 channels, with three (RGB) outputs
[8]. Lastly, the RGB composite Day Microphysics is in-
cluded, as its primary aim is to distinguish ice from
water, and to provide information on cloud top particle
size, temperature and cloud optical thickness [7]. Inter-
estingly, this composite uses the visible 0.8 and infrared
3.9 channels, in contrast to the commonly used 8.7, 10.8
and 12.0 channels for the 24-hour Microphysics RGB
composite [6]. As the composite depends on a channel
close to the visible spectrum, it can only be used during
daytime, halving our data set in e�ect. However, it uses
new channels that are not included in our selection so
far, and it is more commonly used for daytime speci�c
rainfall analysis [2].
In total, this yields ten input channels: four BTs and

two RGB composites. An overview of their correspond-
ing underlying SEVIRI spectral channels is provided in
Table 1, including corresponding spectral bandwidths.

ID Centre (`<) Min (`<) Max (`<)
VIS 0.8 0.810 0.74 0.88
IR 3.9 3.920 3.48 4.36
IR 7.3 7.350 6.85 7.85
IR 8.7 8.700 8.30 9.10
IR 10.8 10.800 9.80 11.80
IR 12.0 12.000 11.00 13.00
Table 1: SEVIRI spectral channels used in this re-
search, with corresponding nominal centre wave-
lengths and spectral bandwidths [9].

As our study period is July 2018 to December 2022,
most images originate from the MSG 4 satellite. How-
ever, a small part originates from MSG 2 and MSG 3.
No signi�cant di�erences between these images were
found. Partly missing or duplicate data were not in-
cluded. In total approximately 45 TB was downloaded
using the EUMETSAT API1 in November 2023. Given
the large quantity of data, high bandwidth Virtual Ma-
chines (VMs) on Google Cloud Platform (GCP)’s Com-
pute Engine were used to achieve this task. Data was
1https://api.eumetsat.int

shortly stored on Persistent Disks to reduce retrieval
times for processing, as discussed in Section 2.3.

2.3 Matching Images with Gauges
To estimate hourly rain/no-rain measured by a gauge
using SEVIRI images, we need to collect the relevant
pixels for each gauge and timestamp. Consequently, for
each gauge location we take the closest 32x32 grid of
SEVIRI pixels as shown in Figure 4, for each of the ten
input channels discussed in Section 2.2, and for each
four images per hour. Note that because of this deci-
sion, the grid points are not equidistant to the TAHMO
station, as shown by the red dot slightly deviating from
the central intersection. However, in favour of speed,
and testing robustness later on, we decided not to in-
terpolate.

Figure 4: TAHMO gauge surrounded by the closest
32x32 grid of SEVIRI pixels.

As for the download task, we use multiple VM in-
stances on GCP’s Compute Engine to process the 45TB
of images to approximately 500GB of 4 dimensional
tensors of shape 10 ⇥ 4 ⇥ 32 ⇥ 32. To speed up this pro-
cess we use SSDs as Persistent Disk, and after pro�ling
we were able to reduce the processing time to seconds
per image. With 160k images and multiple VMs this
yields a feasible processing time. We store the resulting
tensors in a Bucket on GCP’s Cloud Storage.
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3 METHODOLOGY
3.1 Data Preprocessing
For the train, validation and test set we use 80/10/10
percent of data, respectively. To split up the data, sev-
eral considerations need to be taken into account. To
prevent �tting to speci�c weather stations, ideally we
perform validation and testing on weather stations on
which no training occurred. However, as the data entails
51 stations, this would imply 10 stations for validation
and testing. This is undesired as the density of stations
over the study area is already low, and large di�erences
exist in data availability between the stations. Mean-
while, we need to take into account that there is a high
correlation between two subsequent data points. Using
one in training and the other in testing is unacceptable.
Furthermore, all three data sets should be representa-
tive for each time of the day and year. Therefore, as the
study period is almost 5 years and we are interested in
4/5th of the data for training, we designed Algorithm 1
to solve these constraints.

Algorithm 1 Data Splitting for Training, Validation,
and Testing.
for each unique date 3 in the study period do
if (~40A (3) + 30~_8=_~40A (3)) mod 5 < 0 then

Assign 3 to Train set
else if (~40A (3) + 30~_8=_~40A (3)) mod 10 = 0
then

Assign 3 to Validation set
else

Assign 3 to Test set
end if

end for

The data imbalance of 1:49 as discussed in Section 2.1
poses signi�cant challenges for training machine learn-
ing models e�ectively. A commonly employed strategy
to mitigate this issue is to oversample the positive class
(rain) or undersample the negative class (no-rain) in the
training data. We decide to go for the latter, randomly
reducing the no-rain occurrences to 1/5th of the origi-
nal size, improving the ratio to 1:10. The validation and
test set remain una�ected.
Lastly, to standardise the SEVIRI images we calculate

the ten channel-speci�c means and standard deviations
from the training set. These are subsequently used to

also standardize the validation and test set on a per
channel basis. The values are clamped at [-4, 4].

3.2 Model Inputs
The data sources outlined in Table 2 serve as model
inputs for hourly rain detection, with corresponding
domains before preprocessing. Note that due to the
inclusion of the Day Microphyics RGB Composite, we
exclude all data outside the daily time interval of 7:00-
19:00.

Model input Domain
BT of 7.3, 8.7, 10.8 and 12.0 channels R4⇥4⇥32⇥32

+
Desert Dust RGB Composite R3⇥4⇥32⇥32

Day Microphysics RGB Composite R3⇥4⇥32⇥32

Elevation R
Time of day (-1,1)
Time of year (-1,1)
Table 2:Model inputswith corresponding domains
used for hourly rainfall detection.

3.3 Model Architecture
In regions with abundant meteorological data, the use
of Machine Learning techniques for rainfall estimation
has been well-established for over a decade. Notably,
the rapid advancements in image classi�cation due to
the introduction of Convolutional Neural Networks
(CNN), have signi�cantly bolstered the use of satellite-
based rainfall estimation techniques. Already in 2016,
Meyer et al. [15] showed that fairly rudimentary DL
techniques outperform conventional Machine Learn-
ing techniques such as Random Forests in estimating
rainfall over Germany using SEVIRI imagery. Fast for-
ward three years, and Moraux et al. [16] employs an
advanced encoder-decoder architecture, similar to the
U-Net architecture that originated in biomedical image
segmentation [19], mapping SEVIRI images to pixelated
gauge images. Combined with gauge interpolation and
orographic information, the paper shows good now-
casting results.
In a follow up work, Moraux et al. [17] show that

by also including radar, performance is enhanced sig-
ni�cantly. Similarly, van der Kooij [26] uses radar to
nowcast heavy precipitation events in the Netherlands.
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Input channels AUPRC POD 1-FAR F1 Score ACC
BT 7.3, 10.8 0.31 0.46 0.24 0.29 0.97
BT 8.7, 10.8, 12.0 0.34 0.43 0.25 0.29 0.97
Desert Dust RGB Composite 0.32 0.44 0.26 0.31 0.97
Day Microphysics RGB Composite 0.39 0.50 0.25 0.32 0.97
All ten channels 0.37 0.47 0.27 0.32 0.97

Table 3: Performance metrics for di�erent input channels.

The author uses the Trajectory Gated Recurrent Unit
(TrajGRU) DL architecture that was developed by Shi
et al. [22] to actively learn location variant structures for
recurrent connections, i.e. capture trajectory patterns.
Xu et al. [27] also uses TrajGRU as a �rst stage, showing
good performance in capturing rain �eld trajectories.
The authors subsequently combine an attention module
with a Generative Adversarial Network model using
a U-Net structure for the second stage, outperforming
comparable studies.
Although these architectures achieve strong results,

they are built on large data sets, usually involving radar.
More data allows for more complexmodel architectures,
but in our case we have orders of magnitude less data.
Employing these elaborate architectures could there-
fore lead to rapid over�tting. Therefore, we resort to
an older, widely used CNN architectures for classi�ca-
tion tasks that requires less data for training than the
previously described architectures: ResNet [11].
Speci�cally, we use two groups of three Pre-Activation

ResNet blocks of resolution 32 ⇥ 32 for the �rst group
and 16 ⇥ 16 for the second. In the last layer, adaptive
average pooling is applied and the time stamps and ele-
vation are added in a subsequent fully connected layer
of size 64. The total number of parameters in this setup
is approximately 67k, depending on the number of input
channels. Due to the low density of rain gauges in our
study area, we opted not to include gauge interpolation
as a model input.

4 RESULTS
To evaluate the model, we utilized the test dataset. All
training was conducted exclusively using the training
and validation datasets. Given the highly imbalanced
data, performance was assessed using the Area Under
the Precision-Recall Curve (AUPRC) metric. Addition-
ally, we report the Probability of Detection (POD), False

Alarm Rate (FAR), Accuracy (ACC), and F1 Score, de-
rived from the model’s contingency table. Logging was
performed usingWeights and Biases2.
The results are obtained using a one GTX 1070 8GB

GPU with 32GB of RAM. We use the python library
PyTorch, and in particular PyTorch Lightning, to instruct
the GPU.
For the ResNet architecture, we experimented with

di�erent group sizes and resolutions, with the current
setup yielding the highest performance. Both theAdamW
and SGD optimizer were tested, with AdamW giving
the best performance overall. Therefore, all reported
results use the AdamW optimizer.
To further correct for the data imbalance, we use a

class weight of 1.5 for rain events. The batch size is 512,
and we run 50 epochs for each experiment. We clip the
gradient at 1, and for the learning rate we employ a 5
step decay strategy. For the loss function we use Binary
Cross Entropy on the logits. For each experiment, the
best performing model in terms of minimal validation
loss are saved.
No data augmentation was done, as our region of

interest is bordered by the Sahara at the top and the
Atlantic Ocean at the bottom, yielding signi�cantly
di�erent meteorological dynamics. Experiments were
carried out moving the rain/no-rain threshold to val-
ues higher and lower than 0.4, as discussed in Section
2.1. However, no signi�cant di�erences in performance
were found.
To demonstrate the e�ect on performance when us-

ing di�erent input channels, �rst the input channels of
Estébanez-Camarena et al. [4] and Moraux et al. [16]
are evaluated. Subsequently, the Desert Dust and Day
Microphysics RGB composites are tested, and lastly all
ten channels combined. The results are presented in
Table 3.

2https://wandb.ai
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5 DISCUSSION
This study follows up on the promisingwork of Estébanez-
Camarena et al. [5] and corresponding follow up study
[4]. Although we use more gauges, cover a larger time
period, include elevation, and use a widely used deep
learning architecture for classi�cation, the results show
worse performance which we cannot fully explain. We
do note that as we employ a time step of one hour in-
stead of three hours, performance is adversely a�ected.
Nonetheless, a POD of 0.50 and FAR of 0.75 is insu�-
cient for practical purposes. Initially we tried rebuild-
ing the architecture from Estébanez-Camarena et al.
[4] with 11 million parameters. However, we were not
able to reproduce the results. Due to strong signs of
over�tting we adapted a smaller, di�erent architecture
with approximately 67 thousand parameters.
Besides the time step argument, performance might

also be negatively a�ected due to the inclusion of gauges
spanning a much larger area than the relatively dense
gauges in Northern Ghana. Furthermore, despite Figure
3 not indicating this directly, most of the low availability
gauges are located outside of Ghana - with the Ghanian
gauges employed by Estébanez-Camarena et al. [4] hav-
ing relatively high availability. The inclusion of these
low quality gauges might have added extra noise to the
measurements. Lastly, while ResNet is a well-known
and broadly cited architecture for classi�cation tasks,
it remains a general architecture that was not speci�-
cally designed for capturing spatiotemporal patterns.
Perhaps architectures speci�cally designed for this task,
such as the encoder stage of the TrajGRU architecture
[22], yield better performance.
An intriguing result of our study is that the model

exhibits its lowest performance on the channels utilised
by Estébanez-Camarena et al. [4]. This suggests that
incorporating additional channels could enhance their
model’s performance. Although the di�erences in per-
formance between our models are minor, the results
indicate that during daytime, most cloud information
is captured by including information from the near-
visible spectrum. This underscores the potential advan-
tage of developing separate rainfall estimation models
for daytime and nighttime. A contributing factor to
this observation could also be that information from
the near-visible spectrum was included using a com-
posite product. As discussed in Section 2.2, compos-
ites incorporate meteorological information that the

model therefore need not learn independently. Perhaps
including these patterns directly in the source data is
bene�cial in studies where limited data is available. A
result challenging this observation is the slightly worse
performance of the Desert Dust composite with respect
to its underlying raw channels, speci�cally the 8.7, 10.8
and 12.0 micron channels. Namely, despite being de-
signed to recognize dust, it is very similar to the 24h
Microphysics composite [6 8]. Lastly, including all ten
channels did not improve overall performance, which
shows that adding additional input data need not yield
better results.
However, perhaps most important is the data con-

straint faced in the West African Sahel. Moraux et al.
[16] uses very high quality 5-minute data of more than
a thousand gauges in a region signi�cantly smaller than
our study area. They achieve a POD and FAR of 0.47
and 0.63, respectively, using the BTs of the 8.7, 10.8
and 12.0 channels. Additionally, due to the high gauge
density, they also performed gauge interpolation, in-
creasing the performance to a POD of 0.75/0.84 and FAR
of 0.30/0.10 on a 5-minute/daily time step, respectively.
This demonstrates the potential of having a high density
gauge network, and therefore also the urgency for the
West African Sahel and the African continent generally
to boost the number of weather stations available.
Now we do note that are already many stations avail-

able. TAHMO is one such example, but there are nu-
merous others, such as national weather agencies. Com-
bining these data sources could bring data conditions
and therefore model performance closer to those ob-
served in the West. Perhaps even di�erent types of data
such as soil moisture [18] could be of use. Therefore we
highly urge the data controlling agencies in this �eld to
make the data easily accessible for research purposes,
as this would allow for multi-source studies instead
of commonly observed single-source studies such as
this one. However, at this point we recommend future
work to focus solely on small densely gauged regions,
employing a daily time step or larger. Lastly, new data
sources such as Meteosat Third Generation, which have
better spatial and temporal resolution, or inclusion of
radar [17] could boost performance.

6 CONCLUSION
This study examineswhether the benchmark for rainfall
detection in the West African Sahel can be improved by
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incorporating a wider array of data inputs. By leverag-
ing more channels of the SEVIRI instrument, including
both infrared and near-visible, we aim to enhance the
accuracy of a Deep Learning model in detecting day-
time rainfall, evaluated on ground observations. The
results show that best performance is achieved when
information from both the infrared and near-visible
spectrum are utilized. Interestingly, despite the prox-
imity of our study area to the Sahara Desert, including
information indicative of desert dust did not enhance
performance. Nevertheless, model accuracy is insu�-
cient for practical purposes.
The primary challenge in this region remains the

limited availability of high-quality meteorological data.
The di�culties associated with improving data quality
and increasing the number of weather stations under-
score the need for more accessible local data that is al-
ready available. Improving data accessibility would not
only support the development of more accurate weather
models, but also enhance the capacity for researchers
to address the unique climatic challenges faced by the
West African Sahel.
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