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Abstract

This paper illustrates the development and application of an Al-based system aimed at addressing
the critical need for accurate and accessible meteorological data among farmers in Northern Ghana. Due
to climate change, irregularities in the rainy season pose a significant challenge to determining optimal
crop planting times. Recognizing the importance of rainfall data for effective crop management, our
system automates the process of data collection and interpretation using Computer Vision models. The
innovation lies in the use of locally available resources: rain gauges made from plastic bottles. The
system processes images of these gauges, shared via WhatsApp, to automatically measure and visualize
the rainfall data. This solution not only enhances the scalability and reliability of the existing manual
method but also represents a sustainable approach to addressing community-driven needs in regions with
limited resources.

1 Introduction

Research findings indicate that the pace of climate change is exceeding initial predictions, posing sig-
nificant challenges to socio-economic progress in developing countries [1]. Due to a mix of political and
economic difficulties, and limited ability to adapt coupled with various societal pressures, Africa faces sig-
nificant risks from climate change [2]. Among the regions affected by climate change, Africa is considered
one of the most vulnerable due to a combination of factors. Although Africa contributes relatively less
to climate change compared to other continents, it experiences significant challenges and risks associated
with it [3]. This vulnerability stems from the continent’s heavy reliance on rain-fed agriculture, which is
particularly susceptible to changes in rainfall patterns and severe weather events.

Furthermore, Africa faces additional obstacles such as widespread poverty and limited adaptive ca-
pacity, which hinder its ability to cope with and recover from climate change impacts [3]. Therefore, in
these regions, accurate and timely data on rainfall is crucial for effective agricultural management and
strategies. However, conventional methods of weather reports or satellite-based weather data are either
unavailable or not viable due to geographical and socio-economic factors.

In Northern Ghana, Farmers have historically identified the right time to begin sowing using a combi-
nation of ecological indicators, experience, and traditional knowledge, referred to as Indigenous Forecast-
ing (IF) [4]. However, climate variability has disrupted such indicators and historical trends. Figuring
out the right time to plant crops has thus become even more difficult. Farmers now rely on a combina-
tion of IF, meteorological data, and weather forecasts to determine when to begin planting. In the rural
communities of Northern Ghana, meteorological data is spatially coarse and therefore difficult to use for
farming, which requires more fine-grained weather data specific to each farm’s location [5]. Reports from
locals also suggest rainfall differs greatly from farm to farm, kilometre to kilometre *.

The areas of interest lay in low-resource communities, so any forms of high-tech solutions in hardware
and sensors are not a possibility [6]. To address the issue of limited localized meteorological data, a
community of farmers from Nyankapala, Tingoli, and Tutamale in Northern Ghana has developed their
own method using homemade rain gauges. These rain gauges enable them to collect rainwater, measure
rainfall, and generate their own datasets to analyse rainfall patterns and predict optimal times to plant
crops. Having such localized insight into the amount of rainfall can allow farmers to better manage
their crops and sow the land. The farmers manually collect the data from the rain gauges and share
the data through WhatsApp images. This manual process, however, is not reliable, efficient, or scalable.
Therefore, this project aims to automate the data collection, processing, and pattern identification as
much as possible.

This project aims to create a scalable approach, empowering farmers with data-driven decision-making
and enhanced use of rain gauges for better agricultural practices. We do so by discussing the specifics of
the current setup. Its challenges and the proposed solution are elaborated on in the following sections.

2 Background

A rain gauge is a device used to gather falling rainwater, and thus measure the amount of precipitation
in an area. By correlating the amount of rainwater with actual rainfall metrics, or other indicators,
rain gauges can be used to gather accurate and highly localized precipitation data [7]. However, data
collection, such as collecting manual measurements of rain gauges, is often time-consuming and prone to
€errors.

lInterview with resource team, North Ghana
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Figure 1: Location of communities in Northern Ghana, visualized in green, areas of communities in red.

To address these limitations, the integration of artificial intelligence (AI) technologies, specifically

image recognition, offers promising opportunities for automating rainfall data collection and improving
climate resilience in the Global South.
One recent example of utilizing Al technology for rainfall prediction is implementing artificial neural
networks (ANN) [8]. ANN, inspired by the functioning of the human neurological system, offers a
model for extracting meaningful spatial and temporal characteristics from historical rainfall patterns,
particularly when dealing with complex and dynamic evolutions [8]. The use of ANN in rainfall forecasting
takes advantage of its ability to identify nonlinear relationships and capture intricate patterns that may
exist within historical rainfall data. By mimicking the human brain’s processing capabilities, ANN can
analyse the complex interactions between various meteorological factors and derive valuable insights
for predicting future rainfall patterns [8]. The wide application of artificial neural networks (ANN)
in hydrological problem-solving, such as rainfall forecasting, is facilitated by their ability to operate
without the need for explicit knowledge of physical laws or assumptions commonly required in traditional
statistical approaches. French et al. utilized ANN to develop a rainfall simulation model that effectively
provided accurate forecasting information, including temporal and spatial distributions [9]. Similarly,
Luk et al. employed ANN to forecast short-term rainfall in an urban catchment [10]. The empirical
findings of these experiments demonstrated that the ANN model with a shorter lag exhibited superior
performance in accurately forecasting the index [8].

Another example is using image processing methods for the deformation area of open-pit rock slopes
under variable rainfall [11]. Proposed by Wei is a method based on the combination of the RGB color
space and a support vector machine (SVM) to identify the rainfall areas [12]. In the upcoming section
of the paper, we will review a similar approach to image recognition that has been employed in the
development of our Al model.

3 Current Challenges and Proposed Solution
3.1 Context

The primary challenge faced by communities in Northern Ghana now is in scaling and analysing the data
collected to detect trends in rainfall and thus identify the best time to plant crops. Currently, farmers in
communities in Northern Ghana take pictures of handmade rain gauges, made by cutting the top off of
a plastic water bottle (standardized to a 1-liter size with all/most bottles coming from the same water
bottle brand).

These pictures are then sent using WhatsApp to resource persons in Ghana, who collect them,
manually inspect the water level in each picture, match it to the area the picture was taken in, and then
enter this data into a list of previous measurements. Currently, farmers in the communities of Nykapala,
Tingoli, and Tamale (figure 1) have between 10-15 custom-made rain gauges that they mount on poles
to keep them fixed during heavy winds during the rain. Local researchers, resource persons, and farmers
now desire to scale this over multiple farms within those areas, new areas, and new regions of Ghana.
The process currently implemented is shown in Figure 2.

The challenge is that manually measuring and updating data for hundreds of such images received
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Figure 3: a) Custom-made rain gauge, created by cutting the top off of a 1l bottle, with markings for each
centimeter. b) rain gauge fixed on pole, held firm by circular bands attached on the pole

every day from multiple sources is time intensive and prone to errors. Furthermore, specialized skills are
required to analyse and derive patterns and trends every so often from the collected data.

The proposed solution is to automate the measurement of rainfall through rain gauges and the
collation of data inputs (pictures) from farmers and to visually illustrate trends in the dataset to enable
easy detection of the right time to begin sowing.

3.2 Challenges and Improvements

As elaborated on in Section 2, various Al-based methods have found success in automating data collection
from images. However, the unique context of this application introduces novel challenges that we outline
and propose solutions for below.

The rain gauges used in Northern Ghana are crafted from recycled plastic bottles. Unlike standardized
printed markings, these rain gauges feature hand-drawn markings to indicate each centimetre, as printers
are not easily accessible in the areas of the communities. Moreover, the environmental conditions on
different farms contribute to the rain gauges being filled with or affected by mud and dust. Field reports
have also indicated that the tape or marker used for the markings often gets blown off or erased by
inclement weather.

These factors introduce diverse variations in the data that machine learning (ML) models must
account for, as the clarity of the rain gauge and its markings can vary significantly in the images. Such
environmental variability cannot be controlled, thus we train our ML model to be robust and accurately
identify rain gauges under such challenging conditions.

Some rain gauges may have multiple markings (Figure 5a) due to rewriting caused by weather effects.



This can occasionally confuse the model, which is why we request locals to ensure only one set of markings
on the tape or the bottle is visible in the photos.

The presence of poles and clamps used to secure the rain gauge can sometimes obstruct the view of
the markings or water surface level. For instance, if the water surface is positioned behind the horizontal
clamps, it becomes more challenging for the ML algorithm to differentiate between an empty bottle and
a hidden water surface.

The angle at which the bottle is captured in the picture poses another challenge for accurately detect-
ing the water level. To ensure precise measurements, the water surface must align perfectly horizontally
with the bottle’s markings. Therefore, it is recommended to place the rain gauge on a flat surface, such
as the ground, to avoid unintentional tilts caused by holding the bottle for the picture.

Determining the exact location from which each rain gauge originates presents a unique challenge.
Image compression in messaging applications like WhatsApp often results in the loss of metadata, includ-
ing location data. As a result, image metadata can’t be relied on to track the image’s origin. Location
sharing or manually entering locations introduces additional inconvenience and learning curves.

To address this, each farm and sender is assigned a unique ID, which is also written onto the bottle.
This can then be detected by the model and matched to a location. This idea was developed based on
valuable feedback and discussions with resource persons.

Initially, we encountered a challenge where assigning numeric IDs led to confusion within the ML
model between the numbers representing the location ID and the water level. To overcome this, we made
the decision to use alphabetic letters for location identification, effectively eliminating any ambiguity.
However, implementing this approach requires training an additional model capable of recognizing hand-
written alphabets. This presents an opportunity for future work and further enhancement of our system,
as outlined in Section 9.

The date and time of the picture being taken can, however, be retrieved from metadata. This can be
used to analyse trends in rainfall patterns.

In our approach, we create a video tutorial explaining the requirements for a good picture for the
model, with our solutions for each challenge: 1. Place the bottle on a flat surface (this eliminates the
water level being hidden beneath clams, or tilted water levels) 2. Ensure only one set of markings is
available on the bottle (this eliminates confusion for the model) 3. Place your unique ID on the bottle
(to capture location data)

An Al model is then developed to detect water levels and the ID-based location.

Finding trends over weeks or months of data, collating information from several pictures of rain gauges
each day from several areas and farms, and storing this in a way that is easily visually represented,
retrievable, and can also be accessed by local resource persons and farmers, is the challenge that lies
ahead.

A method of correlating the rain gauge readings to real rainfall requirements for each farm, and thus
learning when real-world rainfall is sufficient and regular enough to begin planting seeds and sowing, is
also the next necessary step.

Considering the unique context of the application, the study area, and the potential lack of famil-
iarity with technology among users and data collectors, our model and approach have been specifically
designed to minimize the learning curve and prioritize user-friendliness. The specific model and proposed
application flow are elaborated on next.

3.3 Demonstration Video

Given the lack of standardization of the images, we have created a short demonstration video on how
the rain gauges need to be placed for the image. Using a certain baseline for the images, helps the model
detect more accurately. The script of the video includes: it should not be too dark outside, the entire
bottle needs to be in the image, centered, the bottle needs to be placed on a flat surface, and remove
any old numbers. Unfortunately, due to time constraints and limited data, we were unable to train the
models for detecting ID’s. Nonetheless, the video does acknowledge this aspect, as it is an opportunity
for further exploration in the future.

4 Design
In order to ensure that the resulting application is as user-friendly as possible, we use a series of models

that require very little manual preprocessing. This approach was created through discussions with stake-
holders in Ghana. The initial interviews provided the requirements for creating a successful application.
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Figure 4: Proposed Flow

The outputs of the AT models involved in the application have been designed to create direct and
understandable metrics:

e water-level: the level of water in the rain gauge,
e location: the location from which the rain gauge originates
o date-time: the date and time the picture was taken

A secondary algorithm is then used to process a series of such data to unearth trends and predict the
time to begin sowing or to convey this information to local users (such as farmers) and researchers.

The data received by the ML model is an image. Each image containing a rain gauge contains the
following: water bottle cut open at the top, water surface, numbered measurement tape vertically placed
on the bottle, and ID. The model must therefore be able to recognize all of these.

We employ a multistep process involving several Al models and algorithms. This process is illustrated
by the flow diagram in Figure 4.

Images of the rain gauge are sent by WhatsApp or other messaging platforms to a Chatbot, which
collects the images and sends them to a series of AT models.

An initial algorithm extracts the date and time the photo was taken. The first AI model is trained to
identify the rain gauge itself and highlight the water surface within. This result is passed to an algorithm
that isolates the numbers at the water surface. A third model which specializes in digit recognition
then identifies the numbers in this isolated image of handwritten digits. A fourth model recognizes
alphabetical IDs. All data extracted by the models is then entered into a database. A final algorithm
captures patterns or trends in rain data such as increases, decreases, sudden changes, etc.

Due to a smaller dataset size, pre-trained models are used in all cases and fine-tuned. The YOLO
model which was pre-trained on a dataset consisting of images of water bottles was fine-tuned on user-
collected images of rain gauges to learn their visual characteristics and accurately detect their presence
[13].



5 Implementation

5.1 Model 1 - Rain Gauge and Water surface recognition

Addressing the challenge of water surface detection assuming a variance of user image qualities, we opted
to fine-tune the pre-trained object detection model, YOLOv8n. Known for its high performance and
efficiency, this ML model enables rapid prediction generation, which is crucial for our use case. A notable
obstacle was the lack of available training data, specifically images of community-used rain gauges. Both
in terms of quantity and diversity, the data was inadequate to effectively train our model, considering the
range of image object detection factors such as water content, angles, lighting conditions, seen objects,
bottle types, colors, and reflections. Therefore, we expanded our dataset using images of homemade
rain gauges found online and synthetically generated images from image generators, introducing varied
image attributes. This data augmentation process was essential to enhance the model’s generalization
capability.

After formulating our training dataset, we undertook manual annotation using specialized annotation
software. We marked bounding boxes around the relevant image objects - the rain gauge and the water
surface near the measurement point(see Figure 5). This step allows the model to generate bounding
box coordinates, enabling the cropping of images at the water level(see Figure 6). Subsequently, a digit
classification model can interpret the cropped images to estimate the water measurement.

Figure 5: Rain gauge and surface detection Figure 6: Crop of surface

5.2 Model 2 - Crop of digit

To extract the number near the water surface, we fine-tune the YOLOv5s [14] pre-trained model, and
the training data for this model is the crop images of the water surface which are part of the output of
the last model, the example that can be seen in Figure 6. And because our next step is planning to use
a CNN based on the MNIST dataset, for better input image quality, while we crop the digit, we draw
the box around the digit as 34x34 pixels which will be resized to 28x28 in the next step(the input image
size of the original MNIST CNN is 28x28 pixels), the result of the cropped digit could be seen as Figure
8.

5.3 Model 3 - Digit recognition

For the construction of the digit classification model, we tailored the renowned MNIST dataset, which
is a classic set of 70,000 28x28 pixel images of handwritten digits from 0-9, often used in ML and image



Figure 7: Raingauge and surface detection Figure 8: Crop of surface

processing fields. However, considering our specific application where rain gauge measurements span
from 1-20, a modification of the original dataset was required. We conducted a process of permuting and
concatenating digit images to create two-digit images. This operation effectively doubled the dataset
size, yielding a total of 140,000 samples.

Subsequently, we trained a Convolutional Neural Network (CNN) - a type of neural network especially
effective in processing grid-like data such as images - on our custom dataset. The model resulted in an
accuracy of around 84% on the validation set, but when we test it with the real data from the local
community in Ghana, the performance and accuracy are not well, in most situations, we can not get the
accurate result, so this model should be ameliorated in the future work.

6 Evaluation, Testing, and Validation

6.1 Evaluating models

Each AI model underwent evaluation using a comprehensive test dataset comprising rain gauge images
that the models had never encountered before.

To assess the model’s performance, we focused on two key aspects. Firstly, we examined whether
the model correctly identified the rain gauge within the image. Secondly, we verified whether the model
accurately highlighted the relevant area of the water surface in the images.

As creating a dataset with a hundred diverse rain gauges and differing water levels from real users
and resource persons in Ghana was challenging initially, a workaround was used. Multiple pictures of a
few bottles, filled to different water levels, and taken from different angles, were captured to generate a
portion of the dataset. Additionally, we incorporated images of water bottles and homemade rain gauges
found online to augment the dataset (figure 9).
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Figure 9: Annotated dataset used by models

However, we observed that this approach led to certain challenges. When the model was trained on



larger datasets, it exhibited a tendency to overfit, resulting in the identification of numerous false positives
(figure 11). Conversely, when trained on smaller datasets, the model’s performance was compromised,
leading to lower accuracy levels (figure 10).

Confusion Matrix Normalized

Figure 10: Evaluation of Model trained on small Figure 11: Evaluation of Model trained on large
dataset dataset

However, this is an issue that will decrease with time as the number of users increases, and the dataset
of the model expands. Currently, we include a check in the application that requests a human to verify
the model’s prediction if its confidence for a prediction is lower than 90%. This number was chosen as
all models had accuracies higher than 90% on average.

The algorithm within the application that extracts the date and time from the image was tested by
the messaging platform, such as WhatsApp or Telegram, and was determined to be accurate.

6.2 Validation of Application

We conducted user feedback sessions with users and local resource persons and demonstrated the appli-
cation to them. The feedback received was overwhelmingly positive, with resource persons expressing
satisfaction with the system’s ease of use, understandability, transparency, and accuracy. A Telegram-
based Chatbot API was developed that could immediately process images and return data about the
water level of the rain gauge, however, Telegram was found to be unusable by the local community due
to a lack of familiarity, unavailability, and learning curve. Therefore, a Whatsapp-based API is being
developed as part of future work.

Based on discussions and feedback from users, the data from the models will currently be routed to
an Excel spreadsheet that will be used to analyse trends. This will be a transition to a database and
app in the future. Throughout the development process, we kept the needs and requirements of the
community at the forefront. The solution was designed to address the unique challenges faced by farmers
in monitoring rainfall and making informed decisions regarding planting and sowing. By automating
data collection from rain gauges, our system significantly reduced the manual effort needed to interpret
rain gauge data and will contribute to reducing the uncertainty caused by climate variability. The direct
and understandable metrics provided by the system, such as water level, location, and date-time, proved
to be highly valuable in facilitating data-driven decision-making.

To ensure the robustness and generalization of our solution, extensive testing was carried out under
varying environmental conditions. We evaluated the system’s performance across different rain gauge
designs, image qualities, and environmental factors such as dust and mud. Our models demonstrated a
remarkable ability to adapt to diverse contexts, accurately identifying rain gauges and interpreting the
markings and water surface levels, even identifying rain gauges accurately from photos taken in the night
(figure 12).

The stakeholders were happy with the idea to create a tutorial video that instructs the farmers how
they should take the photo and what they should consider whilst doing it.

We recognize the social and ethical implications of deploying Al-based systems in local communities.
Our solution aims to empower farmers and resource persons by providing them with valuable insights
to support agricultural practices. By aligning planting activities with rainfall patterns, our system has
the potential to enhance agricultural productivity and contribute to more sustainable, efficient farming



Figure 12: Illustration of accurate identification of the rain gauge even during nighttime

practices. We have also taken measures to ensure data privacy, security, and fairness. We implement
safeguards to anonymize data by storing only the location, date, and time of rain-related measurements,
without storing phone numbers or other personally associated data sent by users taking rain-gauge
pictures. The models, training dataset, and data are open source and public, thus ensuring transparency.

7 Reflection

The manual process of measuring and updating data from numerous images received daily is time-
consuming and prone to errors. Variations in the rain gauges, such as hand-drawn markings, mud,
dust, and tape erosion, introduce challenges for machine learning models. However, whilst developing
the algorithms, the discovery was made that these challenges can be overcome when enough data is
collected. The angle at which the bottle is captured can impact detection accuracy, next to the presence
of enough light. Additionally, the absence of location metadata in image compression hampers tracking
the origin of each rain gauge. The approach taken resulted in the recognition of the water bottles, water
surface, and measurements by finding the number on the tape. Pretrained models, such as YOLOv5s and
digit recognition models, are fine-tuned using user-collected images of rain gauges. Clear instructions
provided through a demonstration video help ensure high-quality images for accurate detection and
analysis and increase the dataset.

8 Limitations

It can be very valuable for local farmers in Northern Ghana to use computer vision (CV) to detect the
amount of rainfall in the rain gauges. However, it is important to take the limitations of this method into
consideration, explore alternative approaches, and identify any possible extensions that might enhance
effectiveness. Several considerations to keep in mind are, for example, regarding the overall use of CV
for rainfall detection. Namely, the quality of the images captured by local farmers in Northern Ghana
heavily varies due to factors such as lighting, camera capabilities, and user expertise. Poor image quality
influences the accuracy of the algorithms detecting the amount of rainfall [15]. E.g., during the testing
of our model, we discovered that in darker environmental conditions, the algorithm is not able to detect
the bottle nor the amount of water inside it. The self-made rain gauges currently lack standardized
calibration in image quality, creating measurement errors, which in turn also play a role in the accuracy
estimation. Another limitation to consider is the positioning of the rain gauges in the images. The rain
gauges need to be positioned in such a way that the detection algorithm can properly identify the bottle
and not mistake another object for the rain gauge. The orientation and position of the rain gauges also
have to correspond in all the images, as inconsistencies can affect the accuracy of the algorithms as well
[16]. We had the additional intention of integrating a WhatsApp Chatbot API in response to the farmers’
sent images. This API would have provided farmers with information on the ideal timing for planting
or irrigating crops based on the amount of water in the rain gauges. Due to both time and financial
constraints, this is something for future work. Lastly, Northern Ghana has a significant amount of land
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and the amount of rainfall can vary across the different regions. Considering this factor, we aimed to
incorporate the precise location of each rain gauge, which could have been obtained from the metadata
of images sent on WhatsApp by the local farmers. However, due to privacy reasons, Whatsapp does
not disclose this metadata. To overcome this limitation, our demonstration video includes instructions
on implementing a system in which each rain gauge is assigned a unique ID, each ID corresponds to a
specific location. This approach allows the local farmers to associate the rain gauges with their specific
locations and obtain relevant information, to help them in their crop management.

Possible solutions or extensions to the other above-mentioned limitations would be to integrate mul-
tiple factors and data sources. Using a combination of CV to detect the amount of rainfall, together
with weather forecasts and satellite images, the accuracy and reliability of the rainfall estimation would
improve. Another solution is to train the model on a larger and more diverse data set. Currently, we
have very a limited amount of images, which affects the accuracy of the detection algorithm. Using
machine learning in combination with more data can improve the algorithm drastically. Lastly, given
the short period, we have thought of a solution to standardize the way images are taken by making
a demonstration video. This might help the farmers in creating the gauges and images in such a way
that help the algorithm to detect the amount of rain much better. To further extend this, local farmers
can be better supported if their feedback is collected and user studies are conducted. This way, more
user-specific challenges can be addressed as well.

9 Future Work and Extensions of the Current Solution

While significant progress has been made in the implementation of the CV model for processing rainfall
data, there are several areas that warrant further attention and exploration. In this section, potential
avenues for future work to enhance the effectiveness and impact of the Al-powered rainfall data processing
system in Northern Ghana are discussed.

Firstly, improving Prediction Accuracy. Despite the successful recognition of water bottles and sur-
faces by the CV model, there is room for improvement in rainfall prediction accuracy. Future research
should focus on refining the model’s algorithms and incorporating advanced machine-learning techniques
to enhance its predictive capabilities. Additionally, exploring the integration of other relevant data
sources, such as soil moisture and atmospheric conditions, could further enhance the accuracy of rainfall
predictions. Next, the limited rain season in Northern Ghana poses a significant challenge for data col-
lection. Future efforts should aim to extend the duration and coverage of rain data collection, potentially
through the deployment of additional rain gauges in strategic locations. Researchers recently conducted
an effort to combine rain gauges with high Spatio-temporal satellite-based rainfall data for various ap-
plications in Ghana [17]. A potential collaboration with these researchers could benefit both parties,
since this project is able to create a network of low-cost rain gauges in the area of interest, including
the CV model to process the data. Furthermore, the project must be scaled up so that it is sustainable
for the future. As the system progresses, efforts should be made to scale up its implementation and
ensure its long-term sustainability. This can be achieved through continued collaboration with govern-
ments, local communities, and relevant stakeholders. Establishing policies that support the adoption of
Al-powered agricultural systems and investing in digital infrastructure and connectivity will be essential
for widespread deployment and usage.

To summarize, while the collaboration with spatial-temporal satellite rainfall data has shown promise,
future work should concentrate on refining the predictive accuracy, expanding data collection efforts,
improving user experience, scaling up implementation, and assessing the socioeconomic impact.

10 Conclusion

In conclusion, this paper presents an innovative Al-based solution for automating rain gauge data col-
lection in the context of Northern Ghana. By addressing the unique challenges of the environment,
low-resource context, and user-friendliness, our approach offers a practical and efficient method for accu-
rately detecting rainfall patterns. The successful collaboration with local stakeholders, including farmers
and researchers, has been instrumental in ensuring the relevance and applicability of our solution in
empowering local agricultural practices, enhancing decision-making, and contributing to sustainable de-
velopment.

We believe that our solution holds great promise for empowering agricultural practices and sustainable
development in the region and beyond.
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