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ABSTRACT
Given the devastating effects of deforestation for the environment
and local populations in rural areas of Africa, monitoring changes
in vegetation coverage is an essential task of many development
organizations and local forestry services. Currently, there are no
systems or tools available that provide the necessary information
for this context. In this paper a fully functional and user-evaluated
system for remote monitoring of tree and vegetation coverage is
presented. The system uses machine learning algorithms based on
the ideas of convolutional neural networks and U-Net architecture.
The system and its user interface have been designed, built and
evaluated according to requirements of two local NGOs in West
Africa.
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1 INTRODUCTION
Tree theft and deforestation are a real problem many people face in
rural drylands in West Africa. Trees are being stolen from private
lands which can dramatically influence the lives of the rightful
owners in very negative ways [8].

In the rural communities in the southern part of Mali, which
is the region of focus of this paper, one of the most prevailing
biome are the savannas. Trees have significant influence on the
closest surroundings, influencing both the local fauna and flora [40].
Changes in forests and tree cover can greatly affect the ecosystem
in terms of climate regulation, biodiversity richness, water supplies
and carbon storage [15]. The illegal tree cutting is a big obstacle in
any regreening efforts of the drylands, which promise to transform
the degraded landscapes into productive areas with sustainable
land management practices [35].

Trees are disappearing from privately held properties of the
local people because of tree theft conducted by small organised
groups. For the local forestry services it is difficult to fight this
crime because of the large ground area needed to be covered.

Remote sensing and in particular satellite images analysis is a
promising complementary tool to help the authorities fight these
crimes, track deforestation and regreening. The public and private
imagery from satellites provides high resolution view of the Earth
on a periodical basis. Remote sensing can be done utilizing data from
different kinds either airborne or spaceborne sensors. Furthermore
powerful signal processing methods are being developed which
allow exploiting this information even in greater detail [5].

The combination of the vast amount of satellite data withmodern
data processing techniques, including machine learning, has the

potential of bringing tremendous value to help to identify tree theft
in West African countries.

The goal of this research was rooted in the formulated research
question:
Can we design a system or tool that can help monitoring the tree loss
and changes in tree coverage in rural Africa?
And additionally, two sub-research questions to be addressed in
order to develop the potential system:

(1) Sub-RQ1: What is a suitable AI-based remote sensing ap-
proach to monitor changes in vegetation coverage and indi-
vidual trees?

(2) Sub-RQ2: How should the user interface look like, to make
the system usable for its targeted users?

In this research, I have analyzed, designed and developed a sus-
tainable tree cover analysis remote sensing system, that can auto-
matically analyze large areas of land using artificial intelligence
algorithms, and provide insights on the tree cover. This system is
developed for the context of rural Africa and therefore, there are
constraints and requirements related to this precondition.

The project should be understood as a first step towards achiev-
ing that overarching goal of identifying illegal tree-cutting. This
research strives to design and implement a tree monitoring system,
excluding the temporal dimension of analysis, thus no comparison
between different satellite images will be implemented at this point.

In the upcoming section, I will describe the background for this
project, this touches on ICT4D project specifics and stakeholders. In
section 3 the insights into remote sensing and related work will be
presented, with the direct contribution of this project. In section 4,
the used methodology during the research will be covered. Section
5 walks through the actual conducted research and all of it’s stages
in detail. Section 6 discusses the sustainability aspects and future
work. Finally in section 7 a conclusion of the work conducted in
presented.

2 BACKGROUND
Big part of this research is designing and developing Information
and Communication Technologies (ICT) solution for rural Africa.
Because of the socio-economic impact for a developing country, it is
understood as a project regarding Information and Communication
Technologies For Development (ICT4D) as defined by [17]. Besides
ICT4D context, this chapter introduces the stakeholders.

2.1 ICT4D context
When conducting ICT4D projects, sustainability is a very important
aspect that has to be take into account. The economical, social and



environmental impacts the proposed solution carries are fundamen-
tal in evaluating the projects as success or failure [31].

Development and implementations of a system for the use in
the third world countries can raise many challenges that can be
hard to predict. This can be entirely different cultural and social
background [11], where many misunderstanding can happen re-
garding clarifying the goals of the project and setting requirements.
Another challenge can be the different levels of education of the
users and other stakeholders. In that context, the project should for
example consider the appropriate interface to use the system and
make it understandable from the point of view of the actual users
[32].

Apart from the social aspects, there can be many regarding the
context of implementation. In that terms it is important not to
make assumptions around infrastructure like presence or stability
of connection networks, hardware or even electrical energy [11].
Furthermore often the designed solutions are deployed in drastically
different environmental conditions, like heat and dust. This could
be problematic especially for hardware solutions.

In order to fulfil the expectations, it is important to adapt the
applied methodology. Some of the common practices suggest com-
municating the progress of the project frequently and proceed in
an iterative manner [6].

2.2 Stakeholders and project context
The system that is being researched and developed in this project
has been requested by Mr. Amadou Tangara and Mr. Mathieu Oue-
draogo.Mr. Tangara is a countrymanager for the non-governmental
organization (NGO) in Mali. Mr. Ouedraogo is the president of
Réseau MARP, which is a NGO in Burkina Faso. During the re-
search, Ms. Anna Bon, who is the supervisor of this thesis, has
facilitated the very important communication between me and Mr.
Tangara and Mr. Ouedraogo.

Once the system is implemented, the direct users of the system
will be organizations who support farmer-managed regreening in
Africa. Some of the organizations that have already shown interest
is the Dutch organization Both Ends (www.bothends.org) or Mr.
Chris Reij from World Resources Institute in Washington DC, USA.

The mentioned stakeholders have expressed interest in moni-
toring and analyzing trees using remote sensing technologies. The
ultimate goal would be tracking change of vegetation particularly
in areas with high regreening or deforestation activities. Specifi-
cally the NGO in Mali is very interested in the use-case of tracking
illegal tree cutting. The hopes are that a system could ultimately
provide hard evidence to the local authorities to fight tree theft.

The reason for requesting such system by the stakeholders, is
that at the point of the research, there are no remote sensing systems
that would satisfy the needs of the stakeholders. The available tools
are both very expensive and extensively complex to use. There
is a tremendous need for a remote monitoring tool that is both
user-friendly for this specific purpose, and at the same time can be
operated at a reasonable cost.

This project tries to make a system that demonstrates the capa-
bilities of satellite image analysis in this context and sets the ground
for future research that would extend the introduced system.

Monitoring the vegetation is an important part of any project that
aims to protect trees in rural areas which makes many governments,
organizations and donors very interested.

3 STATE OF THE ART OF SATELLITE
IMAGERY ANALYSIS

3.1 Remote sensing
In essence, remote sensing is the acquisition of some insights about
the object or phenomena of interest, without having the measuring
device in a direct contact with the subject [22].

Remote sensing sensors can be classified as either active or pas-
sive. Those sensors, which react to the natural radiation emitted
or reflected from the observed surface (e.g. reflected from Earth)
are called passive, an example would be digital camera. The active
sensors produce their own electromagnetic radiation in order to
illuminate the surface by this artificially created radiation. A digital
camera with flash could be considered an example of an active
sensor.

There are several major parameters which define the charac-
teristics of the captured data. Spatial resolution, is a measure of
the smallest object that can be resolved by the sensor. Usually ex-
pressed in meters or centimetres per pixel. Spectral resolution, the
spectral bandwidth with which the image is taken, meaning the
range of the captured wavelengths. Temporal resolution, denoting
the time interval between individual observations of the same area
of interest. Radiometric intensity, which is the number of discrete
values of brightness the sensor is capable to distinguish. [29]

There are also 2 different categories of remote sensing systems
from the perspective of where the sensors are: airborne systems
and spaceborne systems.

Airborne systems, which include plains and unmanned aircraft
systems (UAS) with attached sensors, operate on relatively low
altitude above the Earth’s surface. Being closer to the observed
area allows for higher spatial resolution and use of sensors which
can not operate from the spaceborne systems. One of such sensors
is LiDAR, which can create a 3D map of the scanned surface and
thus providing the height information about the examined objects.
This method of remote sensing is useful only on local basis. In
case of large areas or on the global scale using air-crafts becomes
unpractical. [23]

Spaceborne systems offer much larger aerial coverage than air-
borne systems. It is mostly sensors attached to satellites or space-
crafts capturing the surface of the whole planet Earth. Some of the
satellites are operated by governments which provide the captured
data freely without charge. One of such satellites is the Sentinel-2
operated by the European Space Association (ESA) launched in 2015
as part of the European Copernicus program [19] which provides
for multi-spectral imagery spatial resolution of 10 meters per pixel
[26]. At the time of working on this paper, this is the best spatial
resolution out of all the publicly available satellite imagery sources,
right in front of the popular Landsat project of the USGS/NASA
initiative with spatial resolution of 30m [21]. The 10 meter spectral
resolution in unfortunately not sufficient for identifying individual
trees. There are privately operated satellites which offer spatial
resolution up to 0.35m [4], one of such providers is the company
DigitalGlobe.
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3.2 Satellite imagery analysis
What is important to note, especially in the case of analysing satel-
lite imagery is how the satellite data is presented. Light can be either
reflected from the object surface, it can be absorbed, scattered or
refracted. Optical sensors measure the quantity of light reflected
by the surface observed in a given range of wavelengths. If all of
the wavelengths reflected from the surface are observed together,
we speak of a panchromatic image (all colours are included), these
are usually presented as grey-scale imagery [9]. In other cases,
wavelengths can be divided into multiple bands, each of the bands
having own wavelength range. This separation into multiple bands
produces so called multi-spectral images [9]. An example of such
band division is shown in Figure 1, where the bands are denoted
as Visible, Near Infrared and Middle infrared. Various materials dif-
fer in reflectance of different wavelengths. It is possible to show
how much of the electromagnetic radiance is reflected from that
material across the wavelength spectrum, this is called spectral
signature. For example vegetation has strong response to near in-
frared wavelengths and in this band can be easily differentiated
from other types of materials like water [9]. Different materials can
be identified by the reflectance intensity in different wavelength
bands. It is even possible to distinguish between different types of
vegetation like trees and grass from the spectral reflectance Figure 1.
Characteristics of the material can be amplified by calculating vari-
ous arithmetic combinations of bands called indexes to highlight
certain features in the image. This feature is often used to classify
what does each individual pixel in the image represent, like vegeta-
tion. One of indexes highlighting the reflectance of vegetation is
the Normalized difference vegetation index (NDVI) [41] which is
computed from near-infrared and red spectral bands as presented
in formula 2.

NDVI =
ρnir − ρred
ρnir + ρred

(1)

Figure 1: Reflectance spectra of different types of green veg-
etation (Smith, 2001a)

3.3 Related work
In the domain of vegetation analysis from satellite imagery, there
have been multiple types of different applications developed. They
can be categorized based on the unit of analysis they examine.

One category is identifying individual trees in the imagery. Vari-
ous approaches have been developed on detecting individual trees
from remote sensing data, however these methods usually require
the combination of very high spatial resolution and often specialised
sensors like LiDAR for height detection as an additional source of
data. Methods used in these experiments, like edge detection and
locating local maxima of the pixel values are only usable with very
high resolution satellite or airborne imagery. The spatial resolu-
tion of the input images is usually 0.6m or better. The very high
resolution is necessary because the shapes of the trees need to be
clearly recognisable in order to conduct object detection. Often
supervised learning algorithms are utilized and thus fairly large
sets of training data are needed. In addition these applications often
focus only on identifying trees of one species that can be easily
detected and are constrained with a specific pattern in how the
trees are planted (eg. grid planting structure on farms). The paper
on counting of palm trees on plantations is an example of such
restricted context application [4]. In order to identify individual
trees, human aided systems are developed. The paper on identifying
trees for wild-forest-fires simulations [7]. This paper describes an
application that allows the user to guide the automatic detection
of trees from satellite imagery and spatial vegetation data for the
purpose of building virtual reconstructions of the world for wild-
fire simulations. The system relies heavily on the user, during the
execution of the algorithm user has to take action and tune all of
the important parameters by his/her own judgement in order to
get the best result as a trial and error process. Because of that, the
user has to be highly trained in order to use the system.

The other category of use cases takes a different approach than
the object detection described earlier. The images are analyzed on
a pixel basis instead of trying to identify whole trees, this method
is called segmentation. By doing that an area is identified pixel
by pixel where the material is categorised usually based on the
spectral signature of that material. This approach is more suitable
for lower resolution images like the one from Sentinel-2, Landsat
and other public satellites. This way, applications on crop species
classification and in the forestry domain on estimation of the forests
gain/loss and tree species classification [19, 27].

3.4 Contribution
The contribution of this thesis is a fully functional monitoring, easy
to use tool that can be easily used to analyze tree coverage in Mali,
Africa at low cost. Moreover this project provides a much needed
deeper insight into the specific context of using satellite imagery
for tree segmentation and detection in the regions of Mali, Africa.
These insights are encouraged to be used to build on this project
and ultimately create a full-fledged, easy to use detection system
which many government organizations, NGOs and others are in a
desperate need for.

4 METHODOLOGY
In order to approach the research in a concise, appropriate manner
for its context, I implemented a methodology, which is heavily
inspired by the agile software development life-cycle [3] and the
ICT4D methodology for similar projects [30]. This methodology
consists of 5 consecutive phases as depicted in Figure 2.
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Figure 2: Iterative project life-cycle

ICT4D projects. That is because these projects usually have some-
what experimental nature. In the case of this project as well, many
of the requirements are either unknown or vaguely specified. This
is why the developing such systems has elements of experimen-
tation and discovery and thus needs to be fast and cheap [6]. As
stated by [13], agile development methods with iterative nature are
very fitting for ICT4D projects. As mentioned, an important aspect
of this methodology is the iterative character. In each iteration, the
produced solution should be closer to the desired, at first vaguely
formulated, outcome. In case of this research, in total 3 iterations
have been conducted. Only the last 2 iterations will be described
in detail, since the first iteration was dismissed early on into the
research and was mostly about familiarizing with the topic and
selecting data source.

Each iterations consists of 5 consecutive phases. However if
needed, it is allowed to return to previous phase, as denoted by the
small back arrows in Figure 2. This is useful if the newly discovered
facts provide insights that point out to a change in previous believes.

In the Use case analysis the goal is to understand the differ-
ent stakeholders, identify the problem and outline the goals and
expectations they have from the system.

Phase System requirements definition is about formally defin-
ing the functional and non-functional requirements for the final
solution. This should be done after a broader understanding of the
stakeholders and use-cases is established. Their expectations, goals
and use-cases has been captured in previous phase.

The following phase is the System design step. Because of the
usually unfamiliar environment where the system will be deployed
and used, numerous factors and constraints have to be taken into
account when designing the system. Find out about the context
and the constraints set by the context and make design decisions to
address them. In an ICT4D project, this might be a little more chal-
lenging but is nonetheless important because of the unfamiliarity
of the circumstances, needs and limitations of the users. One of the
appropriate methods for conceptualizing the design and decision
made, is Questions Operation Criteria modeling method (QOC) [25].

QOC is a method to visualize the design space and make better deci-
sions. Each of the options supports or challenges a specific criteria
which is a important requirement for the project. By visualizing the
design space, where all options are presented, and all the affected
criteria are assessed, an informed decision can be made on which
option to pursue for the biggest benefit.

The second to last phase is System development, where archi-
tecture, data processing and the development of the system itself is
discussed in detail, including all the rationale and implications for
the specific choices.

In the last phase Testing and evaluation. A closer look is taken
to assess the performance of the developed system, and relate it to
the goals and expectations proposed earlier.

5 CASE STUDY
This sectionwill cover thewhole life-cycle of the development of the
system for monitoring trees in Mali Africa using satellite imagery.
The iterations conducted during the research project and their steps
as introduced in the methodology section will be described. In total
there were 3 iterations. The first iteration was a denied shortly after
the start so it is considered as Iteration 0. This iteration was mostly
about researching appropriate satellite imagery data sources and
is briefly described in System design section (subsubsection 5.3.1)
including the ramifications. Full detailed description is provided
for the other 2 more relevant iterations for readability purposes.

5.1 Use-case analysis
The initial request was for a system, that could in any way, help
with monitoring the vegetation in Mali Africa, in the Tominian re-
gion. The monitoring should focus on tracking illegal tree cutting of
individual trees because they are vital for the environment in many
ways as described in the introduction section. The problem the au-
thorities are facing, is the lack of evidence through the absence of
hard quantitative data, which makes fighting the tree cutting very
difficult. It is infeasible, both from time and costs perspective, for
the authorities to track the incidents only with human force, even
more so, preventing the tree cutting from happening in general.
For the local people it can be dangerous trying to stop the theft
form happening or even simply reporting these organised groups
responsible for the crimes. A cost effective system, that would pro-
vide quantitative data about tree cutting to the authorities, would
help with solving this problem.

It became obvious, that building the full system, that monitors
tree cutting is beyond the scope of this research project. After
talking to the stakeholders, an alternative approach was established.
In this research, the developed system should monitors trees and
their count as requested, but should not do so on temporal basis.
The comparison element between individual images will not be
included at this moment. Also, the system should be designed in
a way, that would allow other researches to easily continue with
the work and extend this project towards the ultimate goal. This
sets a realistic expectation on the system and makes it a very good
starting point for any further extension, since in order to achieve
the original request of comparing tree counts on timely basis, the
system will be just extended. Additionally tracking the tree count
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and coverage will provide very valuable insights about the region
as well and is thus set to be the new goal of the project.

The stakeholders and a more detailed context on their overall
expectations is described in subsection 2.2.

Two important use-case scenarios have been set for the system.
For the second iteration, the use-case analysis remained the same.

5.1.1 Tree cover analysis of a desired area in Tominian region on
demand. The system needs to provide a user interface (UI) for a
interested user to easily analyze any area in Mali in the Tominian
region. The system should provide the analysis results in a reason-
able time, ideally right in the same interface. The use-case should
be easy to execute without any extensive training necessary.

This use-case was further specified in the feedback for the first
iteration. In the next version there should be a support for French
interface. As French is the official language in Mali, the system
has to provide both English and French interface. It should also be
possible to export the analysis results.

5.1.2 Automated continuous tree cover analysis of a desired area
in Tominian region. The system has to be designed in a way, so it
is possible for continuous automated analysis of the area of inter-
est. This has to support the use-case, where a analysis is set-up
and interested parties are informed if an abnormal situation is en-
countered. Support for such automation ensures adherence to the
original request of developing a illegal-tree cutting monitoring ser-
vice and possibility of and extension for such functionality in the
future.

5.2 System requirements definition
From the conducted use-case analysis, it was apparent, that both
functional and non-functional system requirements are vague and
often open-ended. This is because the stakeholders are treating
the project as an experiment to explore the possibilities and just
give a direction to pursue. Based on the communication with the
stakeholders through Ms. Bon, who mediated the communication
with interested parties in Mali Africa, a list of requirements was
put together. Both functional and non-functional requirements
collected during all the iterations are presented in Table 1.

5.3 System design
There were several important design decisions that had to be made
before, or right after starting with the system development. In
order to make those decisions, and reason about the rationale, QOC
analysis has been conducted [25]. QOC analysis has been performed
for 3 important design questions as described in the sections below.

5.3.1 What satellite data to use? The choice of where to get the
satellite images from was intensively researched at the start of this
project. The QOC diagram Figure 3 visualizes the final decision
made.

• Q1-O1 Public satellite images: Provide medium resolu-
tion imagery of the region of interest publicly free of charge.
Images could be analysed more often.

• Q1-O2 Private satellite images: Imagery provided by pri-
vately operated satellites have very high spatial resolution
but are expensive.

Functional Requirements

Must
Have

- Analyze satellite images for canopy cover.
- Analyze satellite images for tree count.
- Show map.
- Show predictions map.
- Show tree count analysis result.
- Show canopy cover area size analysis result.
- Present area analysis results in both meters
squared and hectares.
- After analysis show the coordinates of the AoI
polygon.
- Provide both French and English user interface.

Could
Have

- Analyze specific regions by defining own area
of interest (AoI).
- User interface (UI) to intuitively define AoI for
analysis.
- Implement a feedback for into the web appli-
cation.
Non-Functional Requirements

Must
Have

- It has to be possible to use the system without
any special training.
- For deploying and using the system, no dedi-
cated hardware should be needed.
- System has to have modular architecture in
order to allow for further development and ex-
tension.
- Systems architecture has to be prepared for
future automation of analysis executions.

Could
Have

- Running and operating the system shouldn’t
introduce extensive costs.
- The results of the executed analysis presented
in a timely manner.
- In second version, try to improve the accuracy
of canopy cover predictions.

Table 1: Functional and non-functional requirements

Figure 3: QOC diagram for prediction image source

Rationale for choice Q1-O2: The initial idea at the start of
the research, was to explore the possibility of using public satellite
images as data source opposed to images from privately operated
satellites. This is because the public images are for free, which
would allow to analyze the images on more frequent basis. This
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option was researched right at the start of the project, in what I call
Iteration 0. Soon after exploring this option, it was obvious that for
individual tree monitoring tool, the public satellite imagery doesn’t
offer high enough spatial resolution. To demonstrate this limitation,
both Figure 4 and Figure 5 show the exact same location. As the
goal is monitoring individual trees, from the figures it is obvious
the 10 meter resolution of the public image does not offer the detail
needed. The 10 meter resolution image is from the Sentinel project.
Sentinel is a satellite program operated by the European Space
Agency (ESA) and offers the highest resolution of any publicly
available satellite imagery [12].

Because sustainability and cost is a big factor in this research
project, extensive research has been conducted in order to find very-
high resolution images that would be usable for desired detailed
tree analysis. One satellite image of the desired Tominian area
was found as a sample image from a commercial vendor of space
imagery called Digital Globe. This image covers roughly 800 km2,
was dated 01/03/2017 and is captured by the WorldView-3 satellite
and provides 8 spectral bands. Because March is the middle of the
dry season, the image offers the needed spectral data and covers
the area of interest (AoI), it was evaluated as well suited to be used
in this research. Because the image can be used free of charge, it
dramatically brings down the cost of the research.

Since the vegetation landscape undergoes radical transformation
throughout the year [28], therefore analyzing trees in thewet season
and the dry season is very different. A decision has been made, that
analysis will be only conducted during the dry season, which will
be the focus of this study. The reason behind this decision is that the
grasslands and bushes that emerge during the wet season (as well
as other seasonal vegetation) are not of the interest of the analysis
and only introduces undesired noise. Dry season landscape exposes
individual trees in much more prominent way.

5.3.2 How to get training data-set? In order to build accurate pre-
diction model as intended in this research, the model needs to be
trained on preferably very large labeled data-set. An example of
a image, mask pair needed for training is shown in Figure 9. This
data-set should well represent the predictions that are ultimately
expected from the model. A training data-set for this use case (tree
recognition in the regions of tropical savannas) was unfortunately
not available. When considering how to get a relevant training
data-set, 3 options were evaluated. The QOC diagram is presented
in Figure 6.

• Q2-O1Manually create owndata-set:Manually label hun-
dreds of images from the Tominian region to be used for
training.

• Q2-O2 Outsource custom data-set creation: Outsource
the custom training data-set creation, to a 3rd party.

• Q2-O3 Use modified similar existing data-set: Utilize
existing training data-set, which was created for similar pur-
pose with similar context.

Rationale for choice Q2-O3:Manually creating custom data-
set would be very time-consuming and probably could not be com-
pleted within the time-scope of this research. In addition to that,
the necessary size of the data-set is unknown before the model is
trained and evaluated for performance. Because of that, outsourc-
ing of the creation of custom data-set could be very expensive. In

Figure 4: Public Sentinel image spatial res. 10m

Figure 5: Proprietary Digital Globe image spatial
res. 0.3m

Figure 6: QOC diagram for getting data-set

order to use an existing data-set for the training of the model, a
data-set for very similar use-case has to be found regarding a very
similar environment. If a training data-set deviates too much from
the input ultimately used for prediction (predicting trees in Mali),
the predictions can turn out to be very inaccurate. After extensive
research, a suitable data-set has been found. In order to use it for
training, extensive pre-processing had to be applied, both to the
training data-set and ultimately to the prediction input in order
to make them as similar as possible. This is discussed in detail in
subsubsection 5.4.4.

5.3.3 How to approach system architecture? The ambition of the
stakeholders goes beyond just one research project, based on that
there were some requirements. One of the criteria for this research
were delivering a solution proposal and aworking prototype demon-
strating the functionality. Another criteria was to conduct a re-
search, that can be extended by future work. In order to do that,
this project should provide a well established starting point. In
order to do that, the product of this research should be easily main-
tainable and extendable. Based on these expectations a decision on
the system architecture had to be made, as shown in Figure 7.
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Figure 7: QOC diagram for application architecture

• Q3-O1Modular systemarchitecture: Structuredmodular
structure of individual single-purpose application modules.

• Q3-O2 Simplemonolithic systemarchitecture: Easy and
fast prototype solution fulfilling the functional requirements.

Rationale for choice Q3-O1: Based on the iterative experi-
mental methodology, a modular system has been selected as more
suitable approach.

Even though a monolithic system would be faster and easier
to develop, there are serious concerns about maintainability and
extendability of the final system. This is mainly because of the com-
plexity of the whole system which is further described in subsubsec-
tion 5.4.1 describing final system architecture in detail. Thanks to
the modular approach, it is easy to improve individual components
in each iteration of the research as needed, without the need to
modify the whole system. In addition the use-case of automation
of periodic tree cover analysis can be satisfied.

5.4 System development
The development across all iterations will be described. This de-
scription will cover the challenges encountered, the rational for
change in the upcoming iteration and finally comparison of the
different approaches taken. The first iteration was to validate the
basic approach of using machine learning algorithm for predictions
and web user interface for the user to interact with the application.
After feedback of the stakeholders, both the predictions algorithm
and the web interface was improved.

Based on the requirements and available data, machine learning
techniques (ML) are utilized to make the tree predictions. In the first
iteration, I have decided to implement simple deep neural network
(DNN) to validate the use of ML techniques for this context. This
decision was based on previous research regarding the use of DNNs
[33][18]. A simple prototype web user interface was develop in
order to interact with the predictions system. As described in the
upcoming section, the predictions algorithm identifies trees in the
whole satellite image provided and saved this global prediction
image. The predictions are made on a global scale beforehand, inn
order to allow for fast analysis of specific regions, user defines area
of interest (AoI) in the web application on the map. The user just
requests analysis results on that specific region. The request is sent
to a server where a local analysis for that AoI is executed and results
presented to the user.

After validating the results and collecting feedback from the
stakeholders, improved version for both the web application and
recommendation system has been build. The web application is
made more user friendly and additional futures get implemented.

The recommendation system is changed from the proof of concept
DNN, to more complex convolutional neural network (CNN) [37].
Where DNN algorithm considered only the values of each pixel
separately, the CNN approach not only considers the values of
that pixel, but also takes into account the neighbouring pixels, so
shapes can be recognised. In summary, this is very important in
this context, since the a pixel has a higher chance of being a tree
pixel if it is next to another tree pixel. This approach is very well
suited from this task as previous researches in similar domains have
demonstrated [38][42][24].

5.4.1 Architecture. The system had to be designed in suchway, that
it is easily possible to extend the system with further functionality.
This is mainly because this research only focuses on tree cover
analysis and counting of individual trees, but doesn’t compare the
findings across different images on temporal basis. This is mainly
due to the available data limitations (as described earlier) and project
time constraints. Modular architecture is also a suitable approach in
combination with the chosen methodology and the iterative nature
of the research, where it should be easy to improve and replace
individual modules of the system.

The final analysis tool utilizes 4 systems (modules) and one data-
base, that are fundamental for the operation. The Predictions Server,
where the predictions about trees for the full image are executed.
These predictions are only executed once on the whole image and
uploaded to the Database (DB). The Analysis Server, where the
predicted image is requested from the DB and analysis only for
the desired area of interest is computed. For this computation, the
Earth Engine API is used, which runs in the cloud and return the
requested analysis results. Finally the Web Application Server for
hosting the website which is provides the user interface (UI) to the
user in order to interact with the system. The whole architecture is
depicted on Figure 8. The execution can be divided into 2 cycles.
Once new satellite image is uploaded to the DB, the Predictions
Server identifies tree cover on the whole image and saves this pre-
diction back to the DB. The second cycle (local analysis) is when
user requests analysis on AoI. The requested AoI coordinates are
send to the Analysis Server (1), the prediction image is requested
from database (2)(3), and the analysis is run using the Earth Engine
API (4), the response is send to the Analysis server (5) and back
to the Web server (6). The local analysis cycle is denoted by the
numbers in Figure 8. All of the servers are deployed to a server-less
execution environments, which means they do not exist if there
are no requests they need to execute and only spin-up if a request
arrives. This approach saves a lot of cost because the servers do
not cost any money if they are inactive. This is further described
int the sustainability section, subsection 6.1. The Production server
is used only if new satellite image is provided for analysis. During
the research only 1 image was available, because of that as the
prediction has been already made, this server is no longer used.

5.4.2 Technologies. The user facing Web Application is build us-
ing the JavaScript framework React. Client-side technology was
used because the likely inconsistent internet connection the users
might be facing. The Analysis Server is a Node.js Express server.
As a substitute for the Production Server, I used the Python Google
Colab execution environment because it offers very high perfor-
mance environment free of charge which is well suited to make
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Figure 8: Tree analysis system architecture

machine learning predictions. For the machine learning model, the
TensorFlow framework was used.

During development, the JavaScript-based Google Earth Engine
code development environment was used to help with visualization
and image analysis.

5.4.3 Data. This research is focused on how to use high-resolution
satellite imagery for tree monitoring in the scale of individual trees.
For this purpose, as already described in subsection 3.2, I am relying
on the unique spectral signature of trees [9]. The WorldView-3
sample image used for this research encodes 8 spectral bands as 2.2
meters per pixel resolution.

In the first iteration, in addition to the available bands, one more
band is artificially engineered based on arithmetic of the existing
near-infrared and red bands. This new band is the Normalized
difference vegetation index (NDVI) [41] and is calculated as follows:

NDVI =
ρnir − ρred
ρnir + ρred

(2)

The values of the 9 bands are afterwards normalized between the
values 0 and 1 in order to increase the performance of the neural
networks used for prediction [44].

Iteration 2. For the second iteration, more engineered features
are added to highlight the the tree and vegetation related pixels.
Based on previous researches, 4 new indexes have been created that
help highlighting the tree related pixel based on spectral reflectance.
One of them is the canopy chlorophyll content index (CCCI) used in
remote sensing analysis of wheat [14]. Another one is normalized
difference water index (NDWI) designet to sense vegetation con-
tained liquid [16]. The last two are enhanced vegetation index (EVI)
and soil-adjusted vegetation index (SAVI) which is similar to NDVI
but considers additional wavelengths for correction [34].

5.4.4 Training Data. For the predictions, unsupervised artificial
intelligence (AI) algorithms are used and thus a training data-set
is needed. The purpose of the first iteration was to validate this
approach with a quick experiment on very small training data-set
with simple deep-neural-network (DNN). A training data-set of
160 hand picked data-points was constructed. 80 of the data-points
represent tree pixels, 80 represent any other pixel that are not trees.
Each of the data-points in the training data-set is associated with
a value for each of the 9 futures (8 spectral bands + 1 engineered
NDVI feature).

Iteration 2. In the second iteration, the original DNN based pre-
diction system was changed for a more complex convolutional
neural network (CNN). The rationale for this decision is discussed
in the upcoming section [39]. For the CNN model, new type of
training data is necessary.

As the new prediction network uses images for training, not only
individual points, it was necessary to train the network on pairs of
map tile and mask tile. Where the mask tile identifies the tree cover
in the provided map tile, as shown in Figure 9. For this purpose
an existing data-set has been used. This data-set was published by
the Defence Science and Technology Laboratory agency part of
a Kaggle challenge [1]. From this data-set, 189 unique image tiles
(258 x 258 pixels) have been selected as most relevant for use in this
project. The selection has been conducted by manually comparing
the training data-set with the landscape of Mali in Africa. The
training images encode 8 spectral bands, same as theMali prediction
image. As described in previous section, 5 indexes were engineered
which in totals gives 13 feature bands for each pixel. Because the
images used for training of the model are a little different from the
image that will be used as the input to make the predictions on,
both images had to be matched to be as similar as possible. For this
purpose, as mentioned before, only relevant training images were
selected from the data-set, and both the selected training images,
and the image used for prediction, were normalized. To normalize
the values between 0 and 1, min-max scaling was applied, where as
min the 5th percentile of the values was used, and as the max the
95th percentile. This way the extreme outlier values were removed.
This formula is described below as Equation 3.

n(x) =
x − P5th

P95th − P5th
(3)

Figure 9: Training data example, map-mask tile pair

5.4.5 Prediction model. As mentioned in the subsection 5.4, the
prediction model in the first iteration was a simple DNN which
predicts each pixel independently without consideration of neigh-
bouring pixels. The model consists of 4 hidden layers with 5,7,7,5
nodes respectively, dropout 0.1, input with 9 nodes (representing
8 bands + NDVI engineered band), and an output layer with the
probability of the pixel being a tree pixel between 0 and 1. The
architecture is visualized in Figure 10. The model is trained on 160
labeled data-points.
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Figure 10: Architecture of the DNN model

The pixels are after prediction combined again into original form
to represent an image of probabilities with values between 0 and 1.
A binary image is constructed based on the predictions. The values
above the threshold of 0.9 are converted to 1 (representing tree
pixel), those pixels below the threshold are are set to 0 (representing
background). In the binary predictions image, the background pixels
aremasked so that the original image is visible. This post-processing
process is depicted in Figure 11.

Figure 11: Post-processing process from predictions tomask

It became obvious that the DNN network identifies few pixels
of most trees fairly successfully, but underperforms in identifying
all of the pixels of the trees. This is a good indication that a CNN
network, which considers the surroundings and shape should be
an improvement.

Iteration 2. In the second iteration, the simple DNN network was
replaced with more advanced CNN network, as mentioned before in
subsection 5.4. In particular a Fully Convolutional Network (FCN)
with a U-Net architecture [37][36]. The U-Net architecture was
introduced as state of the art approach to for image segmentation
in the biomedical domain. It’s advantage is that it implements so-
called "skip connections" which in addition to the deep structure
which helps extracting the information, also captures the location of
that informationwithin the image. This makes it very well suited for
recognising trees in images and also capturing their precise location
within the image. The architecture is visualized in Figure 12. More
than 30 different model architectures were tested and compared for
performance. The best performing model had the following aspects.
The depth of the U-Net was established to be 5 levels, each level
contained 2 CNN layers (both in the encoding and decoding part).
The number of filter increases 2-fold as deeper the CNN layers are,
which makes the number of filters in the levels 16,32,64,128,256
in the encoder and in reverse in the decoder part of the network.

The ELU activation function was implemented, in order to help
with the dying RELU problem [10]. After every CNN layer, a batch
normalization layer was applied to achieve better performance [20].
The final model was trained for 3000 epochs and the following
hyper-parameters were chosen: Adam optimizer, learning-rate 0.1,
batch-size 25, binary-cross entropy as loss function and 189 steps
per epoch.

Figure 12: U-Net architecture [36]

Because the input for the model are tiles, the prediction image
needs to be sliced up into those tiles of specific dimensions. When
using model which had tiles of dimension 256x256 as input and
made prediction for the whole tile (output 256x256 as well), there
was a big decline of prediction accuracy along the edges of the
tiles. In order to remove this limitation, image is sliced into tiles
with overlap of 1 pixel on each side so that the input dimension
is 258x258 but prediction is made just for the tiles the model has
full information, see Figure 13. This means the output has size
256x256, which means it’s not predicting values for the padding.
This asymmetric approach improved the accuracy of prediction
along the tile edges significantly.

Figure 13: The input image padding strategy to improve ac-
curacy along edges [36]

To train the model, data augmentation was implemented to en-
large the data-set of 189 unique 258x258 training tiles. This was
three-fold, rotation, vertical flip and horizontal flip. For every image
received from the original data-set, there was a 50% chance to be
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randomly rotated by either 0◦,90◦,180◦,270◦. Additionally, every
image had a 50% chance of being flipped vertically and 50% chance
of being flipped horizontally. All the modifications together, arti-
ficially expand the data-set 16-fold, from 189 tiles, to unique 3024
tiles.

During and after training, the model was validated on 1 manually
created grand truth mask for an image tile from the satellite image
of Tominian area. As the validation metric, the Jaccard similarity
coefficient was used, in Equation 4 y represents ground truth pre-
diction mas and ŷ represents prediction made [43]. Simply put, this
coefficient quantifies how well do the ground truth mask and the
prediction overlap.

jaccard(y, ŷ) =
|y
⋂
ŷ |

|y
⋃
ŷ |

(4)

5.4.6 Web application. For the purpose of interacting with the
predictions model and request analysis based on area of interest
(AoI), a web interface had to be created. As described in the require-
ments, the web interface. The web interface enables users to draw
a polygon to select AoI for analysis, sends the coordinates to the
analysis server and receives results, including map overlay with
highlighted canopy cover as shown in Figure 16.

The web server relies heavily on the analysis server, which exe-
cutes all the AoI based predictions. The whole application is build
as a Earth Engine application which uses Google Earth Engine
API (EE) so all of the heavy computations are executed on Google
servers. In order to use the application user has to log-in with
a Google account that is registered for the EE services. This is a
limitation which was not considered important in the first iteration.

The analysis server uses the full prediction image to do the AoI
analysis. It is a Node.js Express server running on Google Cloud
as server-less function. The prediction image is image with pixels
of value either 0 (background) or 1 (tree). In order to count the
trees, this image is vectorized within the AoI bounds, which turns
touching pixels into single shape, denoting 1 tree. This way, it is
possible to count the number of shapes in the AoI and thus get the
number of trees. The analysis server also calculates the area covered
by tree pixels and the total area and sends the statistics including
the tree count back to the web application. The architecture in detail
is described in subsubsection 5.4.1 and is visualized in Figure 8.

Iteration 2. In the second iteration, the new requirements shifted
the focus on making the interface more user friendly. The EE ap-
plication got registered as standalone service so it was not longer
necessary to log in with supported account so anyone could use it
easily. New, user friendly design was implemented as well as the
stakeholder requirement of providing French user interface (one
button to change language between English and French). These
improvements made the application much easier to use for the
stakeholders. New requested futures were implemented, like dis-
playing the analysis result of are cover in 2 units of measurements
(squared meters and hectares). The future of showing the AoI poly-
gon coordinates, and exporting the analysis results including the
coordinates were added as well. The new version of the web ap-
plication is shown in Figure 17. The new version was also made
with mobile devices support. That means analysis can be requested
on mobile phones and tablets and the results are displayed directly

in the device inside the optimized interface. The mobile user in-
terface is presented in Figure 18. The application was coded in
the JavaScript React framework and hosted on Google Cloud Ap-
pEngine. This choice was made, because the users in Africa do not
always have stable internet connection, this technology executes
a lot of the functionality locally without the communicating with
the server (like switching the language).

5.5 Testing and evaluation
5.5.1 Web application. Because of the utilized methodology and
iterative approach, validation and feedback on the web interface has
been received during research. After the first iteration, the stake-
holders evaluated the presented solution as fitting for their use and
proposed improvements for the next iteration. These new require-
ments were noted (subsection 5.2) and later implemented. Full scale
testing was not yet conducted because of the time constraints. To
assist with the future testing a feedback for was implemented into
the web application in order to receive fast feedback from the users.

5.5.2 Prediction model. The performance of prediction model was
evaluated based on one validation mask tile. This validation mask
tile was created by hand and represents the ground truth of the
trees predictions. Ground truth mask is shown in Figure 14d. The
prediction results, are displayed in Figure 14. This array of images
includes the raw prediction probabilities (b), the binary prediction
(c) derived by post-processing and an overlay of the prediction mask
over the original image (e). It is very hard to determine exactly the
accuracy of the prediction system, since the satellite images are the
only source of information and it is impossible even for humans to
confidently tell what are trees and what not. Prom the presented
validation image Figure 14e it can be observed, that X trees were
miss-classified. According to the ground truth, there are 146 trees
in that image. This makes the error in count of the trees around 2%.

A quantified score for the validation image is calculated by the
Jaccard similarity coefficient, asmentioned in previous sections. The
coefficient has the value 0.46 when comparing the post-processed
predictions with ground truth. This is considered a very good re-
sult compared to previous version of the prediction algorithm. The
biggest weakness of the model is that it has been trained on differ-
ent data-set, than is used for predictions. During the training the
accuracy of the model got up to 92.5%, as visualized on Figure 15.

6 SUSTAINABILITY FUTUREWORK
6.1 Sustainability and cost
In regards to ICT4D projects, sustainability is one of the key mea-
surements of the success of the whole project. The sustainability
aspects have been considered throughout the whole research and
decisions have been made to support the environmental, social and
economic sustainability [31].

6.1.1 Environmental sustainability. The whole project is centered
about using remote sensing technologies tomonitor large areas. The
environmental impact of such approach is much smaller compared
to other methods, like using human labour to achieve similar results.
This is thanks to the fact, that using this system, it is possible to
analyze areas of hundreds of hectares automatically within seconds.
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(a) Original image (b) Predicted probabilities

(c) Predicted trees binary mask (d) Ground truth mask

(e) Prediction mask overlaying
image

Figure 14: Comparison of predictions with ground truth

The environmental sustainability was also considered during
the technological implementation of the solution. The application
is hosted on the Google Cloud. This choice was made because it is
carbon neutral and the energy consumption needed to run the data-
centers is 100% offset with renewable energy [2]. Not to waste the
energy, the architecture of the developed tree monitoring system,
is based on the server-less approach which means the service is not
running unless it is being used and scales automatically depending
on the load.

Besides the direct environmental impacts of running the system,
the use of the system itself is tomonitor trees in the Tominian region
in Mali Africa. I hope that, through the use of the system, actions
will be take to improve the less than ideal conditions regarding
trees and forest in the region.

Figure 15: The accuracy of the predictionmodel on the train-
ing data-set throughout the training

6.1.2 Social sustainability. In order to support communities and
ICT4D development, the developed in regards to this project, is
published under an open-source licence on GitHub.com and is
publicly accessible to anyone.

The open-source initiative hopes to fuel the interest in develop-
ing IT solutions with social impact.

6.1.3 Economic sustainability. In regards to the economic sustain-
ability, the developed system has been designed to operate with
minimal cost. As mentioned in previous section the system is hosted
in Google Cloud. The current implementations allows the system
to operate within the free tier category, which means the expenses
of running the system are 0 euros.

The one big expense, is the cost of purchasing new satellite
images, when new predictions on updated images need to be made.

6.2 Future work
This system can used as a great inspiration for anyone interested
in the remote sensing research and ICT4D projects. It is greatly
encouraged to build on top of this project and extend the tool. As
soon as the stakeholders decide to use this system, only the satellite
imagery for analysis has to be purchased, otherwise the system
is ready to be used. The need for expensive satellite imagery is
probably the biggest challenge of this project. Because of the need
for very high resolution imagery, no other alternatives have been
found during the research.

There are many possibilities how to extend this research and
improve the system. As mentioned before, the ambition of the
stakeholders is much bigger than what was possible to accomplish
during this research. The ultimate goal is to be able to reliably count
not only free standing trees but also trees in forests, compare the
counts in between images from different time-points and identify
incidents like illegal tree cutting. Other use-cases could involve
monitoring the development of tree covered area on long-term
basis.

The next steps that should be taken to improve the solution
developed in this research would be improving the accuracy of the
prediction system by training the prediction model on a data-set,
that is more similar to the tropical savannas biome. Another point
for improvement would be counting the trees from the predicted
segmentation maps, currently the system is relying on the fact that
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pixels of the individual trees are not in direct contact with each
other. This could be solved better with own neural network focused
on counting the trees within the predicted segmentation masks.

To asses the reliability of the system, a detailed evaluation still
has to be conducted.

7 CONCLUSION
This research presents a fully functional solution including a proto-
type on how to use satellite images to analyze trees in the Tominian
region in Mali Africa. The time scope of the research, and the
available data unfortunately did not allow to identify illegal tree
cutting for reasons discussed in the previous sections. However
this research has successfully delivered a prototype tool for tree
analysis and has set the directions and solid starting point for fur-
ther research to reach the ambitious goal. The presented solution
uses semantic segmentation and machine learning algorithms to
execute analysis on the satellite image and present the results in
a intuitive web application optimized not only for desktops but
also for mobile devices. For this purpose the U-Net architecture of
convolutional neural network proved to be a very good technical
solution. The system analyzes the canopy cover within the area of
interest, compares the result with the total area and estimates the
tree cont within the region. All of the results can be easily exported
for future reference.

The system is very good at analyzing the area covered by trees
and visualizing the results. The solution for counting trees, focuses
on free standing trees and experiences a notable decline in tree
count accuracy once tree canopies are in direct contact. This is
considered the biggest limitation of the current system. The focus
was also on identifyingwhat other data could helpwith the accuracy
of the system, but as expected, the satellite imagery training and
prediction data seems to be of the biggest importance.

Findings and results of this research should be a great starting
point for any future research in the domain of vegetation analysis
using remote sensing, and generally many other ICT4D projects.
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APPENDIX

Figure 16: System prototype version 1, desktop web interface

Figure 17: System prototype version 2, desktop web interface
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Figure 18: System prototype version 2, mobile web interface
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