RainCast: A Voice Based Weather Service for
Rural Ghana

Hameedat Omoine, Hui Chen, M. Igbal Akhtar

VU University Amsterdam, 1081 HV Amsterdam, The Netherlands,
h.o.omoinechogudo@student.vu.nl, h2.chen@student.vu.nl,
igbalgcuf@gmail.com

Abstract. In the absence of access to weather forecast data in the rural North-
ern Ghana Region, farmers are unable to make sufficient plans to save their crops
from bad weather conditions like storms, floods, etc. With access to weather fore-
casts at low cost, through existing infrastructure, farmers can get weather pre-
dictions and be better prepared for upcoming weather conditions. In this paper,
we have developed a prototype for a voice-based weather forecast application
that makes use of the current GSM and network infrastructure available in the
rural region. The application is able to get weather forecast data through APIs
provided by an online weather forecast service, and make this data available to
users when they call the app. Our research shows that a voice-based weather
application can be built using low cost tools and infrastructure, and users with
a single phone call, can get real time weather data using simple GSM phones
(non-smart phones) with mobile network connection.

1 Introduction

In many rural areas of Africa like Northern Ghana, farming is still highly depen-
dent on the weather condition, for example the gross rain volume at a certain
time of the year. However, farmers at these rural areas don’t have any reliable
and instant source of weather forecast. The most widely used rain forecast in-
formation source is the radio broadcast. Although this information is easy to
get from radio, it lacks the accuracy for small locations and at some point the
weather forecast is only occasionally mentioned in a radio broadcasts. There-
fore, for farmers weather forecast by radio is not an effective and reliable source
because it does not meet their needs and expectations. In order to improve
the productivity and reduce the damage from unprecedented weather changes,
farmers need to know the accurate rain forecast for both coming few hours and
coming few days. In some cases, intensity of rain for example light shower or
heavy rain etc is also important.

For the purpose of helping farmers in rural Ghana villages to improve the
farming productivity, an application will be developed to assist them get rain
forecast and weather information for as far back as the next 5 days. Which
they can get at anytime using their existing cell phones. In terms of technology,
the people in these areas have little to no access to smart-phones or internet.

This also makes it hard to impossible for them to get weather forecasts which
are widely available online. In order to overcome this challenge, the app to be
developed will mainly be a voice-based app. This app would be able to make use
of the existing technologies currently being used in these areas, like the GSM
phones that have no ’smartphone’ functions. The farmers and even non-farmers
will be able to get weather information for their location using a very easy to
use voice service interface.

By developing this application, farmers in Northern Ghana would be able to
make better decisions and improve agricultural planning, that would enhance
their preparedness for various weather changes, leading to reduced crop loss,
better agricultural productivity and more work satisfaction.

2 Use Case Description

2.1 Name

The application to be developed named ”Raincast” will be used by farmers to
get accurate predictions of rain in coming five days. This application will provide
a voice based service via cell phone and we also design web based interface that is
directly connected to weather Service . Currently this app is able to give weather
predictions for only two regions in Northern Ghana, (Tamale and Bolgatanga).
However, its is possible to add as many cities as needed. With this app, the
farmers in Northern Ghana will be able to check and listen to the rain forecast
as well as general weather condition reports for example Tuesday Morning rain
predicted “short but intense” or “long but shabby”, and temperature “is cur-
rently 40 degrees Celsius, very hot” or “is currently 20 degrees celsius, warm”,
etc.

2.2 Summary of Key Idea

In many rural regions in Africa, local radio and mobile phones are the most
important source of information and communication media. Many people have
simple and basic models of mobile phones used for chatting mostly through text-
messages. The wide availability of these cell phones gives us the opportunity to
make use of them in benefiting the local community. The idea is to assist farmers
in deciding what action to take according to the weather of the coming days in
Bolgatanga and Tamale. Farmers could make a call at any time to a local number
that will be picked up by the system and through some simple interactive steps,
the farmers can listen to the rain forecast. This forecasts would be retrieved from
a top rated weather forecasts provider, which would be made available to the
voice application through an API. This on-demand service can be useful to many
other businesses that could be dependent on the weather e.g. transportation,
tourism, etc.

2.3 Actors and Goals

In this Application three categories of Actors with different goals are involved.
These are described in the table 1.

Table 1. Actors and Goals.

Actors Goals

Farmers and other users|Get reliable weather forecasts in order to be able to
depending on weather in-|make necessary agricultural preparations to protect
formation their crops and improve productivity.

System owner Provide a working system that is easy to use
and understand. Collect data from weather forecast
provider and convert into verbal message to provides
accurate weather information to farmers.

Weather forecast provider|Provide the system with accurate weather forecast
information for the Northern Ghana region.

2.4 Context and Scope

Agriculture in Bolgatanga and Tamale, in Northern Ghana is mainly rain-fed.
The cropping and harvesting is done during the rainy season. Meteorological
information is very important for farmers in Ghana. By using this information
farmers can prepare themselves for upcoming weather by taking necessary prepa-
rations and make their land ready for sowing, etc. Weather forecasts that include
only temperature detail is sometime mentioned in a local radio broadcast. But
farmers are not much interested in the prospect of just temperature. Farmers
want to know:

— Rain forecast for the next few days in Bolgatanga and Tamale.
— If it will rain or not, and intensity of rain (heavy or light).
— General weather conditions

The three stakeholders related to this application are thereby:

Farmers: They want to know the Rain forecast in detail for next few days.

Weather Forecast Provider: They will provide Meteorological informa-
tion to the system.

System Provider: They will receive information from the weather forecast
provider and make it available to the users/farmers.

2.5 Use Case Scenario Script

For end-users, such as farmers, using the application is straightforward.

1. The end-user calls the number for the service.

2. End-user selects a preferred language

3. End-user selects a desired location for which they wish to get weather infor-
mation

4. End-user selects the type of weather information they wish to get.

5. The system sends a request to the weather forecast system using an API to

get updated weather information

. The system gets a feedback and gives a verbal output to the user.

7. The end-user hears verbal weather information, and can either end the call,
or request for additional weather information.

=)

Figure 1. in the Appendix shows a call flow for the RainCast application.

2.6 Interaction and Communication

The end-user will call a local number that will be answered by the system and
user will get two options such as for English press 1 and for a local language press
2. After language selection, system will respond in the selected language. Once
user selects a language, user would be asked to select a location, either Tamale
or Bolgatanga for instance. After selection, user is asked to select the type of
weather information they are interested in, from a few options. After selecting
an option, user will be able to listen to information on weather for the selected
location. Figure 2 in the Appendix shows a high level user/system interactions
and communications design, where primary user actions and system outputs are
shown.

3 Contextual Issues

This application and its corresponding use-case scenario is limited to the farmers
who have a mobile phone and their phone is connected to a mobile network. In
addition, the system currently can provide English/French language interface.
The call service will not be free due to operation costs pressure. The weather
forecast information quality is dependent on the quality of information provided
by the weather forecast service, therefore the accuracy can not be fully guaran-
teed.

The connection speed and the system response speed are the key performance
measures of the system. The system should be able to stay connected even
when the user is in an poor signal environment. That means the system should
be active at all the time and communicates frequently with the weather data
provider.

The system is built on top of the existing voice based service platform which
is already in use in some African countries. The environmental dependencies of
the system include network speed, power supply for the server and weather data
connection stability. The biggest technical challenge of the system will be the
concurrent calls from users. If we set concurrent call threshold too big, the costs
of the system will be high but low concurrent threshold will drastically impact
the user experience.

4 Theoretical Background

The Northern Region has a low population, of which the majority of live in
villages with most of them being farmers. The official language of Ghana is
English. Currently there is no reliable system for weather forecast. However,
rain forecasts are very important and useful for farmers to plan their activities.

4.1 Introduction to North Ghana

The Northern Region is one of the ten regions of Ghana. It is the is the largest
of the ten regions, covering an area of 70,384 square kilometers or 31 percent of
Ghana’s area . The Northern Region is divided into 26 districts. The region’s
capital is Tamale[1].

4.2 Bolgatanga and Tamale

Bolgatanga, colloquially known as Bolga, is a town and the capital of the Bol-
gatanga Municipal District and Upper East Region of north Ghana. Bolgatanga
has a estimated population of 66,685 people. Bolgatanga is 161 km to the north
of Tamale.

4.3 Weather

Climate of northern region of Ghana is much drier than southern part of Ghana.
from January to March is the dry season and the rainy season is between July
and December with an average annual rainfall of 750 to 1050mm. The highest
temperature is reached in March and lowest in December and January. The
temperatures of these areas are from 14 degrees to 40 degrees. The wet season
of the year is the best season for Farming, Because in most areas farming only
depend on rain water. If annual average rainfall is below 750mm that’s mean
crops are in less quantity and of poor quality. Due to this reason, farmers want
to get accurate weather predictions for days ahead, in order to give them time
to prepare.

5 Relevant Literature

ICT4D projects in developing countries, especially in resource-limited contexts,
frequently face infrastructure challenges such as unstable power supply, low in-
ternet connection speed and low performance hardware. Therefore, a technically
and economically sustainable development model is required. Based on multiple
technical and non-technical requirements, Victor de Boer et. al. [6] proposed
KasaDaka, a rapid prototyping platform for the rural poor. KasaDaka enables
local developers to choose various hardware and software combinations and de-
velop voice based services. It works well in low cost hardware and GSM network
environments, and makes various service implementation feasible.

The RainCast implementation was mainly carried out using a Django based
VSDK which was introduced by Baart [2]. The VSDK provides an easy to use
GUI so that even developers with less programming knowledge can build voice
services. Before the development of VSDK, developers who wanted to implement
voice services on KasaDaka platform must have extensive Python, VoiceXML
knowledge. However, in the most needed developing countries, developers with
good knowledge of programming skills are sparse. As a result, the voice services
development are expensive and inefficient.

6 Solution Design

The RainCast prototype was designed to cover a series of functionalities that
will help deliver a simple application that provides the locals with weather fore-
casts. These functionalities have been highlighted in this section, a user-system
interactions model can be found in Figure 2. of the Appendix.

6.1 Select Language

The first functionality implemented for the app is the language selection func-
tionality. The prototype has been designed to be able to interact with the user
in English or French. Upon calling the app, users are prompted to select either
English or French, then the system goes ahead and interacts with the user in the
selected language. The main idea behind including English as a language option
is because it is the official language being used in Ghana. Which means that a
lot of people in Ghana will be able to interact with the application by select
English as a preferred language.

However, in the context of this research, the app is mostly to be used by
local farmers in Ghana, more specifically in the Northern part of Ghana. Most of
these farmers are uneducated and only speak or understand their local languages.
Meaning, most of them will not be able to interact with the system in English.
With this idea in mind, we decided that a local language option needs to be
included in order to better fit the context. However, there was a challenge to
implementing a local language. Which was that there were no available resources
or tools for translating the system’s content to a local language within the time
given. The French language was thereby implemented as it was possible to get
translations in French using the ’Google Translate’ tool. It was also important to
include the French language option because it serves as a way of demonstrating
how a non-English language option can be implemented when building this type
of application. It helps to show that once resources for translating to a local
languages are made available, new local languages can easily be added to the
application.

6.2 Select Location

The current prototype has been designed to provide weather information and
forecasts for two locations; Bolgatanga and Tamale. Users are given the option

to select either of these location, then the system is able to respond with weather
data for the selected location.

The first prototype used just a single location of Bolgatanga, in accordance
to the specifications in the use case description. However, based on the feedback
given, the final prototype has included a second location, and the location selec-
tion functionality. The second location Tamale is included in the this version in
order to show that additional locations can be implemented in the application.

6.3 Select Weather Option

The current prototype has been designed to give weather information in two
categories:

— Current Weather Information,
— Five days of weather forecasts.

Once user selects a location, user is asked to select to either get information
for the ’Current Weather’ or information on 'Five days forecast’. The ’Current
Weather’ option gives user information on the current weather, in terms of the
current temperature in degree Celsius, and the weather condition which is pro-
vided as either ’heavy rain’, 'clear skies’; 'cloudy’, thunderstorm’, 'windy’, etc.
By this, user is able to get the current temperature and the current weather
conditions for the selected location.

The second option of five days forecast was implemented based on the weather
APT available. The Open Weather Map API was used for getting weather infor-
mation, and we were able to get a maximum of five days of weather forecasts
for all major cities in Ghana. Therefore, the application was designed to provide
users with five days of weather forecasts.

Based on the feedback received during the demo market, we were made to
consider that farmers are not really interested in numbers such as temperature,
and are more interested in things such as “there will be rain”, “there will not be
rain”, “it will be cloudy and cold”, etc. This prompted the decision to include
only weather condition information in the forecasts, and exclude the tempera-
ture. The weather condition information will let the users know whether there
will be rain or not, as well as the intensity of it (heavy, light, or drizzle). For
each day, user can get the foretasted weather condition for 'Morning’, ’After-
noon’, and ’Evening’. We made use of these descriptions rather than an exact
timestamps because the sense of time for the local farmers will probably be more
adjusted to these three descriptions, rather than saying 6am, 9pm, etc.

Users will be able to navigate through the app to get information on all five
days forecasts starting from the present date. Which means that if a user calls
the app in the morning on a Saturday, the user will be able to get the forecast for
Saturday afternoon and evening, then Sunday morning, afternoon, and evening,
then Monday, Tuesday, and so on. If a user calls back every three hours, the user
will be able to get additional forecasts. More on the forecasts data retrieval will
be discussed in the next

6.4 Retrieve Weather Informations

An important component of the raincast application is the data source that
provides it with weather data. In order to provide the users with real time
weather information, the raincast app is designed to get its weather data from
Open Weather Map. Open Weather Map is a service that provides weather data.
The service provides an API that makes it possible to extract weather data and
link with the application.

The OpenWeatherMap service was selected amongst others because it pro-
vides weather information and forecasts for all cities in Ghana. And it also pro-
vides forecast for as much as 5 days ahead for free, and as much as 16 days for a
paid account. Raincast makes use of two separate APIs provided by OpenWeath-
erMap. One provides current weather data, while the other provides forecasts for
5 days for every 3-hours of the day. The app is designed to extract weather data
from both APIs, and make it available to the users through the voice interface.
From the API, the app retrieves the temperature, weather condition, day of the
week, and time of the forecast. The current weather provides the temperature
and weather condition. While the 5 days forecast provides the date of forecast,
the time of day (morning, afternoon, or night), and the weather condition for
that day. The forecasts are provided for every three hours rather than hourly,
for example, a forecast is given for 6am, then next will be 9am, 12pm, 3pm, etc.
Therefore, the app is able to continuously provide updated weather forecasts
every 3 hours.

7 Implementation and Usage Scenario

This section will discuss how each functionality has been implemented in the
development of our prototype. The current link for pointing to our app is:
http://raincastapp.herokuapp.com/vxml on the Kasadaka VXML Switcher, and
the web interface: https://raincastapp.herokuapp.com.

7.1 General

The final version of the prototype is built using the python Flask framework. This
version deviates from the previous prototype that was built using the Django
VSDK. The decision to use Flask stems from the fact that the Django VSDK
platform did not support the API use and did not give a lot of freedom in
terms of adding functionalities. Also, in terms of development skills, we had
more experience using the Flask framework in developing python applications,
than with Django. This made it easier to rebuild the prototype from scratch and
implement all desired functionalities, including the use of the OpenWeatherMap
APL

A simple web interface was also built for the application. Which makes use
of JavaScript in retrieving weather data from the API and displaying it on the
web interface.

7.2 Audio Files

All output provided by the application have been pre-recorded, named and saved
as wav audio files. Taking into consideration that the Kasadaka platform does
not support text to speech, all audio files that will be needed by the app have
been pre-recorded and saved in the format; bit-resolution: 16 bit, sampling rate:
8000Hz, audio channel: mono, and PCM format: PCM signed 16-bit little-ending.
The format is saved as required to in order to be compatible with Kasadaka.

7.3 Weather API

In order to get real-time weather data to be used in the application, we needed to
connect the application to the to OpenWeatherMap API, and be able to extract
required data and output them to the users. In getting this weather data from
the API, we made use of python, and stored it in the JSON format so it can
be used in the application. Therefore, each time a user calls our application, the
application calls the API, gets the weather data, and outputs the response to
the user.

When a user calls the application, they request two types of data: temper-
ature, and weather condition. However, in order for the app to be functional
on Kasadaka, the app has to respond to the request using pre-recorded audio
files. Which means that all possible responses from the API have to be pre-
recorded and stored as audio wav files, then extracted and played to the user
when needed. For example, when a user calls the application and wishes to get
the current weather condition, the response from the API could be "heavy rainfall
with wind’ in text format. However, since Kasadaka does not support text-to-
speech, this response has to be stored as an audio file, and played to the user.
The following data were extracted from the API and have been pre-record and
stored as wav files to be used by the application.

Weather Condition The OpenWeatherMap API is designed to store up to 41
different types of weather conditions using unique IDs. For example one weather
condition could be ’clear skies’ and the unique ID is 800, another weather condi-
tion is 'heavy intensity rainfall’ with unique ID 500, 'thunderstorm with heavy
rain’ with unique ID 505, etc. Depending on the current or the forecasted weather
condition, the APT responds with one of these 41 types of weather conditions by
providing the unique ID, and the text description. Hence, the idea for including
these weather conditions in the app, was to record all 41 weather condition types,
and save them using the unique ID provided by the API. Which means that an
audio recording of 'the weather condition shows clear skies’ is stored as '800.wav’,
and an audio recording of ’the weather condition shows heavy intensity rainfall’
is stored as ’500.wav’.

The next step was to retrieve only the unique ID for each weather condition
from the API response, then parse it into the VXML template using python, so
that the app can respond with a correlating audio file each time. For example, if
the API responds with the weather condition ID ’800’, the app checks the static

folder and retrieves the audio file ’800.wav’ and plays it to the user. A example
of how the code was implement is as shown below:

<prompt>
<audio src="static/{{context.city_weather.id}}.wav”/>
</prompt>

From the code above, context city weather id will be equals to the weather
condition ID. Therefore, the app will play the corresponding audio file.

Temperature For the current weather option, the prototype application pro-
vides the current temperature in degree Celsius. The API provides the weather
in degrees Celsius. Then in order to make it possible to read out this temper-
ature to the user via the voice interface, the temperature have to be rounded
up or down to two digits. We took into consideration in our designs that the
temperature in degree Celsius will always be between the 0 - 99 degrees Celsius
in the Ghana region which is in Africa. The weather in Africa which is usually
hot has never been recorded to go lower than 0 degrees, and the weather all over
the world has never been recorded to go higher than 60 degrees Celsius. So this
prompted the decision to use degree Celsius, round it to 2 digits, then split it into
2 separate digits. Then audio files were then recorded for the numbers 0 - 9, and
stored as wav files. This means that instead of creating audio files from 0 - 60,
we just needed to create for 0 -9, then pair each individual digits up to make two
digits that represents the temperature. To give an example, if the API provides
the weather temperature as 35.7 degrees Celsius, this value is then rounded up
to 36, then split into 3 and 6, as the first and second digit respectively. These two
digits are then passed into the VXML code using python, and the app plays the
pre-recorded audio files for ’3.wav’, and '6.wav’, with additional audio files that
read ’the current temperature is’, and degrees Celsius So that when user listens
to the temperature using the voice app, user hears "The current temperature is
three six degrees Celsius.” A sample of the code is as shown below:

<prompt>
<audio src="static/currenttemp .wav” />
<audio src="static/{{context.city_weather.fdigit}}.wav”/>
<audio src="static/{{context.city_weather.sdigit}}.wav” />
<audio src="static/degreecelsius.wav” />

</prompt>

From the code snippet above, context city weather digit represents the first
digit, and context city weather digit’ represents the second digit. Using this
method, we have been able to implement a functionality that allows the voice
application read out temperature values from the API. However, based on the
feedback we got from the demo market, we were made to take note that values
such as temperature are not so important to local farmers. This is why we
excluded this detail in the forecast option. But we have left in the current weather
option just to demonstrate a way that this functionality can be included in a
voice-based application when needed.

Day of the Week and Time of Day The next thing that was implemented
in the app is the the day of the week, and time of the day for the weather
forecasts. The users need to know what day of the week the forecast is for
(Monday, Tuesday, Wednesday, etc.), and what time of the day, either '"Morning’,
"Afternoon’, or "Evening’.

The weather API however only provides the date and time in a Unix times-
tamps format, and in a numerical date and time format. Therefore these data
had to be converted into the day of the week format, and the time categorized
into morning, afternoon or evening. Therefore, each time the API provides a
forecast with the unix timestamp is retrieved, converted, then stored as day of
the week (Monday - Sunday), and time of the day('morn’, 'noon’, and ’even’).
And in order to be able to output this via the voice interface, audio files were
recorded for each day of the week: Monday to Friday, and for time of the day:
morning, afternoon, and night, and stored accordingly. Therefore when a call is
made to the API, and for instance, the date is 28th of May, 5PM, the app will
store day of the week as Monday, and time of day as Evening. Then when this is
parsed into the VXML code using python, the corresponding Monday.wav and
Evening.wav audio files will be retrieved and played to the user. User will hear:
"For Monday Evening.” followed by the weather condition.

7.4 Detailed Usage Scenario

Figure 3 in the Appendix shows the call flow for the application. A more detailed
usage scenario script that runs through one complete branch of the application
is outlined below:

1. User calls the application and is first asked to select a preferred language:
RainCast: For English, Press 1. For French, Press 2.

User: (presses 1 for English)

2. User listens to welcome message and is asked to select a location:
RainCast: Welcome to RainCast. We provide you with accurate weather
forecast. Please select your location.

RainCast: For Tamale, Press 1. For Bolgatanga, Press 2.
User: (presses 1 for Tamale and app goes to http://raincastapp.herokuapp.com/tamale)

3. User is asked to select weather type he/she is interested in:

RainCast: All forecasts are brought to you by OpenWeatherMap. To get
information on the current weather, Press 1. To get the weather forecasts
for today and the next four days, Press 2.

User: (presses 1 for current weather information)

RainCast: The current weather is cloudy with heavy rainfall. With tem-
perature at three..five..degrees celsius.

4. User is asked if he/she wishes to get more information:

RainCast: Do you wish to get additional weather information? For 'Yes’,
Press 1. For ’No’, Press 2.
User: (presses 1 for "Yes’)

RainCast: To get information on the current weather, Press 1. To get the
weather forecasts for today and the next four days, Press 2.
User: (presses 2 for 'weather forecasts’)

5. Application retrieves and reads out weather information to user:
RainCast: For Monday afternoon, the weather is cloudy with some light
rainfall. For Monday evening, the weather is cloudy with no rain. For Tuesday
afternoon, the weather shows clear skies.

RainCast: To get more forecasts, Press 1. To quit, Press 2.

User: (presses 2, to quit)

RainCast: Thank you for using our service. Goodbye. (Application ends
call).

The above script shows one of the flows that can be found within the app.
In the forecasts part, if the user keeps listening to more forecasts and reaches
the last one, user is notified that they have reached the last forecast. And that
they can call back in three hours or more to get more updated forecasts, before
the call is terminated.

7.5 Implementation, Hosting and Porting on Kasadaka

By having access to the application folder, our prototype can easily be setup
and running on any local or web server.
The tools that will be needed for implementing the application are:

— Git

Python 3.6 and above
— Pip

Heroku Account

these need to be setup and, or installed, and some knowledge on the use of
them and the Command Line is required. In addition, a video demontrating the
following steps to set up the application on heroku and the Kasadaka based
server can be found here ’https://www.youtube.com/watch? v=6I2INHA5FAg’

Getting the Code As shown in the video, our project code can be found
at https://github.com/armydah30/raincastprototype. Navigate to the 'Clone or
Download’ button, and copy the repository URL.

Setup : The next thing to be done is creating a folder for the application and
cloning the repository. This can be done by opening Command Line and creating
a folder for the application. Navigate into the folder directory as shown in the
video. Then type the command ’git clone https://github.com/armydah30/ rain-
castprototype.git’. This clones the application into the directory. Next, change
directory into the application folder by typing ’cd raincastprototype’, before
going to the next step.

Hosting on Heroku Once an heroku account has been created, the next step is
to log in via command line. Next step is to type in "heroku login’. Type in heroku
email and password as prompted. Once logged in, type "heroku create’ to create
a new application. Next, type 'git add .” to make sure all files are selected. Then
type ’git commit -a -m “first commit” ’. Then type ’git push heroku master’.
This will push the application to the heroku server and have it hosted there.
Once the application has been created and launched, copy the URL as shown in
the video.

Porting on Kasadaka Based Server Now that the application has been
hosted on Heroku, the link can be added on the Kasadaka VXML Switcher, and
used to point to the application so it can be called. If the link for the created
heroku app is "http://raincastapp.herokuapp.com’, add ’/vxml’ behind it. Mak-
ing the link for the app: ’http://raincastapp.herokuapp.com/vxml’ as shown in
the video. The Kasadaka should be set to point to this link, and all calls will be
directed to the application. With this, the application can be called and tested. A
sample call of the application can be found at "https://www.youtube.com/watch?
v=GoKIj2BCZvc¢’

Hosting on Local Apart from heroku, one can also view the application locally,
however, the voice application will not work locally, only the web interface will be
available. In order to setup the local system to have all the requirements to run
the application, type ’pip install -r requirements.txt’ on command line to install
all requirements for the application. Or typing ’pip install flask’, and 'pip install
requests’. Next, open the ’app.py’ file in a desired text editor (e.g Notepad). In
line 11, set debug to "True’ for testing purposes. Then read the instruction in
line 2048, and make the changes as instructed, and save. Go back to command
line, and type in 'python app.py’ and press enter. Application should be up and
running on the local server.

8 Scope and Fidelity of Prototype

Most of the proposed features of the application have been implemented. It is
able to connect to an API and provide current and fore-casted weather informa-
tion for up to two locations in Ghana. It is able to state the day of the week,
and the time of the day for the forecast. Users can actually make use of the app
and get real time predictions as if they were receiving the information via a web
interface.

The only thing not included in the prototype is the local language option.
Due to the lack of time, and access to tools that can provide local language
translations, the local language option has not been included. However, if there
was more time available, and we were able to get someone that is ready to
create audio translations, then if will be possible to include a local language.
All audio files can be created in the local language, and saved as wav files, then

implemented in the application, just as we did with the French language option.
User will have the option to select the local language, and the system will interact
with the user with the local language. If there is access to all audio recordings in
the local language, the application can easily be extended to cover the language.

9 Deployment and Sustainability Plan

As mentioned in section 5, RainCast service is accessible through the KasaDaka
platform which is already in use in several similar use cases at Africa. At the
testing phase, the service was deployed to Heroku, an open source app hosting
platform. In order to test if the service could work in the field, specifically, if
the service could work on the KasaDaka-based server or not, we used an online
server which has same software setup as offline Raspberry Pi. This server runs the
Asterisk and VXI stack as it is used in the field. Because the server/Kasadaka
does not run any (expensive, heavy, big languages only) TTS, all the speech
output needed by the app were pre-recorded and in the .wav format. Before
finalizing the report, the service was tested again on the server and it worked
well.

At this stage, the RainCast is functionally ready to be deployed in the field
without any further configuration or programming. To successfully deploy the
service, following steps need to be done:

1. Hardware configuration. KasaDaka server needs to be able to receive calls
from users and correspond speedily. At this step, help from KasaDaka spe-
cialist is needed. The ideal situation is at the target cities there are already
several KasaDaka servers running and there are extra resource for our ser-
vice.

2. Real-time weather information API configuration. So far we only used one
API for testing. If we want to put our service into practice, a stable and high
volume API is required. The API connection should be able to work in the
low speed environment.

3. Users testing. To validate the service, all the possible scenarios should be
tested. The best way is to invite real users to call the service at different
level of concurrency.

The RainCast service is a light voice based service which consumes low to
medium hardware and network resources depending on the expected concurrency
calls.

The biggest financial challenge for deploying and maintaining the RainCast
service comes from the hardware costs if new servers and base station is required.
To build a brand new base station can be expensive. High costs will inevitably
increase the service price. However in the rural communities at Ghana, high price
equals to fewer users. Therefore, if the service is deployed in a non-KasaDaka
area, funding is required for building a KasaDaka based service center. From the
long run, early stage non-profit funding is also very sustainable for the ICT4D
projects in the area.

10 Evaluation and Discussion

The current prototype has changed a lot from the initial from the previous
versions. The current prototype is able to use real time data from an API,
and has been built using the python flask framework. In evaluating the current
prototype, one can have a look at its usability and understandability. These two
attributes were considered in the development of the application. The call flows
has been designed so they are easy to follow and so the instructions are also
easy to understand. And the users are able to easily understand and navigate
through the app. In terms of learn-ability, users can easily learn how to use the
app as a result of the lack of complexity in the call flow. After using the app
two to three times, users will be able to navigate through the app very easily.
We allowed "bargain’ in the application because once users get familiar with the
system, they should no longer have to wait to listen to all the instructions, they
can just navigate quickly through the app, and get the information they want.
This will allow users get information as quickly as possible, and will also cut
down on the airtime and costs associated with it.

In addition, in terms on modifiability, and flexibility, the prototype can easily
be extended to cover additional locations, and multiple languages based on the
system design. However, with the current codes used in developing the prototype,
it will be quite hard and time consuming to expand the application to cover
multiple cities. We feel with higher software development skills, the prototype
could be built in a way that allows it to be more flexible and scalable. This leads
us to the main limitation we had in developing the prototype; level of skill in
software development.

The main limitation in building the prototype was the level of skill in soft-
ware development available. Although the current prototype is able to meet all
functional requirements, we feel that it can still be developed further, given more
time and more knowledge and skill in software development and Python. With
more time and skills, the codes for the prototype can be cleaned up, and made
more reusable, while making room for easy scalability and modifiability. More
work will continue to be done in enhancing the prototype and expanding the
scope of the application in terms on how many cities it covers, and how much
forecasts it can provide. Future work on the application will involve adding mul-
tiple locations, creating a database that stores all forecasts, and providing users
with more forecasts per day.

11 Conclusions and Future Work

By the end of this project, RainCast, a voice based weather forecast service for
rural Ghana users, could be able to provide real-time weather information via
two languages, English and French. RainCast has been built using the Flask
framework to provide an easy to use weather service, especially rain forecast-
ing for farmers who rely on this information to decide what to do to improve
productivity. RainCast server side implementation uses Flask framework that

make future expansion and maintenance consistent for other developers. On the
other hand, using popular developing framework makes our application reusable
in other similar use cases. Considering limited number of developers working in
rural Africa, RainCast provides a user friendly web based user interface so that
developers with less programming knowledge would be able to customize their
own services.

RainCast is a light service, which means it could run on low spec hardware.
Because in our target service area that server resources and internet connection
are less abundant than developed society, low hardware and network dependen-
cies enable RainCast service to be compatible in the local deployment. In the
meantime, low resource requirements could in some extent reduce operational
costs, which means more affordable and competitive service price. In other words,
RainCast is a sustainable service which has high commercial feasibility to be ap-
plied in real business practices.

However, RainCast is yet to be tested by real target users. Weather the voice
interface is easy to use or not and the usefulness of provided services should be
evaluated by users in form of user survey or user meetings. Concurrency limit
is another challenge which has not yet been tested. Local language support is
critical to the acceptance of RainCast and expand language options should be
considered as top priority in the future work.

References

1. Norther Region Ghana, https : //en.wikipedia.org/wiki/N ortherngregion Ghana)

2. André, B. (2016). KasaDaka: a sustainable voice-service platform.
hitps : //wdra.org/wp — content/uploads/2017/12/Master — thesis — andre —
baartpec2017.pdf

3. Kalanda-Joshua, M., Ngongondo, C., Chipeta, L., Mpembeka, F. (2011). Integrat-
ing indigenous knowledge with conventional science: Enhancing localised climate
and weather forecasts in Nessa, Mulanje, Malawi. Physics and Chemistry of the
Earth, Parts A/B/C, 36(14-15), 996-1003.

4. Asenso-Okyere, K., Mekonnen, D. A. (2012). The importance of ICTs in the pro-
vision of information for improving agricultural productivity and rural incomes in
Africa. African Human Development Report. UNDP Sponsored research Seri

5. Yeboah, S. (2017, July 4). How a lack of access to reliable weather
data is hurting African farmers. Retrieved February 06, 2018, from
https://theconversation.com/how-a-lack-of-access-to-reliable-weather-data-is-
hurting-afr Ican-farmers-80011

6. Lo, A. G., Schlobach, K. S., de Boer, V. (2016). Kasadaka: a rapid prototyping
platform for the rural poor. Abstract from ICT.OPEN 2016, Amersfoort, Nether-
lands.

A Appendix

start

——
User calls and

connects with the
application
e

e
PRI, SE—
User selects

preferred
language

Yes

Select prefemred
weather type

Listen to current
weather
information

5 Days forecast
count=0

Listen to
forecast.
{count +1)

Thank you and
Goodbye
message

Thank you and
Goodbye
message

Fig. 1. System Call Flow

RainCast

Farmer Rain forecast Service WeatherMap

Receive Call

Farmers call the
Raincast app

|

¥

Choose < (" Request

language language

- -
<Ch oose th>‘7 Requestcti?YSelect a
Reguest to Select

preferred weather |«
AN type /

Request weather
data

type
Retrieve weather
data for location

return data

(~ Create verbal 1\

Weather response

listen to verbal
weather response

Fig. 2. RainCast Activity Diagram

Call Received

Generate

language

selection
code

=choice next={#menu1’

Generate city
selection
code

<choice next|

#menu2’

Generate
‘Weather Type
Selection code

e

-

=menu id="menu1| dimi="true"=

=choice next="#menu2"/>

——

End Call

=choice next="#form1"/>

No
=form id="farewell"=

Request and
Retrieve Weather
Data from API

Exiract Selected

‘Weather Type
from Retrieved
Data

4

Provide Audio
Response to

User for the
Selected Weather
Type

Fig. 3. RainCast Activity Diagram

Yes

