
Machine-to-machine communication in rural conditions:
Realizing KasadakaNet

Fahad Ali
VU Amsterdam

m.f.y.ali@student.vu.nl

Supervised by Victor de Boer

ABSTRACT
Contextual constraints play an important role in ICT for De-
velopment (ICT4D) projects. These ICT4D projects include
those whose goal is to enable information and knowledge
sharing in rural areas while keeping constraints such as lack
of electricity and technological infrastructure or (technical)
illiteracy of end-users in mind. The Kasadaka project offers
a solution for locals in rural areas in Sub-Saharan Africa to
share knowledge. Due to a lack of technological infrastruc-
ture, networks and internet connections are often not avail-
able. Therefore, many ICT implementations in those areas
are not able to share data among each other. This paper
explores the possibilities of a machine to machine communi-
cation method to enable information sharing between geo-
graphically distributed devices. We have developed a Rasp-
berry Pi-based device called the Wifi-donkey that can be
mounted on a vehicle and facilitates information exchange
with nearby devices, using the built-in wifi card of the Pi
3. We evaluated the solution by simulating a low resource
setting and testing it by performing so-called ”pass-bys”.
Results show that the system works fairly reliably in the
simulated setting. The machine-to-machine communication
method can be used in various ICT4D projects that require
some sort of data sharing functionality.

1. INTRODUCTION
Bringing Information and Communication technology to ru-
ral areas of the world has proven to be quite a difficult
task. The scientific research field that deals with these
types of problems is called Information and Communication
Technologies for Development (ICT4D). In general, ICT4D
projects need to keep end-users and surrounding contexts
in mind, even more so than traditional IT projects. Off-
the-shelf solutions have proven to be ineffective when im-
plemented in rural countries (Heeks, 2008). Circumstances
such as a lack of financial resources, electricity, (techno-
logical) infrastructure, or low literacy rates and technical
skillsets of end-users should not be overseen as they often
have a significant impact on the outcome of projects.

Over the past few years, members of the Web Alliance for
Regreening in Africa (W4RA)1 at the Vrije Universiteit in
Amsterdam have conducted research and implemented tech-
nologies in the context of ICT4D in a number of rural areas
in Africa (de Boer et al., 2012; Guéret, Schlobach, De Boer,
Bon, & Akkermans, 2011; de Boer et al., 2015). One of

1http://w4ra.org/

the explored concepts is using Semantic Web technologies
to facilitate knowledge sharing in rural areas (Guéret et al.,
2011).

One of the resulting products that came out of this research
is the Kasadaka2, a low-resource Raspberry Pi-based device
that provides an infrastructure on which voice-based appli-
cations can be built and deployed locally. These applica-
tions for the Kasadaka are usually custom-built for specific
needs and use cases. New applications can also be created
fairly easily, making the platform ideal for rapid prototyping
(Baart, 2016). Essentially, these Kasadaka’s are deployed on
a one-per-village basis, giving each village access to its own
little piece of technology that facilitates local information
and knowledge sharing.

In their current state, these Kasadaka’s do not communicate
with each other, making it difficult to send data from one
Kasadaka to another, or to accumulate data contained on ge-
ographically distributed Kasadaka’s in one place. Machine-
to-machine (M2M) communication could offer some valuable
insight for ICT4D projects that deal with similar communi-
cation issues. M2M communication is, by definition, com-
munication between machines and therefore requires little
to no human intervention (Cha, Shah, Schmidt, Leicher, &
Meyerstein, 2009). It is widely applied in Internet of Things
(IoT) use cases such as smart homes. M2M communica-
tion methods could aid in elevating low resource knowledge
sharing use cases to the next level.

This paper presents an approach to these types of prob-
lems. Our approach is based on a method that facilitates
machine-to-machine communication through what we call
”pass-bys”, therefore enabling the sharing of semantic data
across different Kasadaka’s. We thus pose the following re-
search question: ”How can machine-to-machine communica-
tion and semantic data sharing be achieved using a pass-by
communication method in such a way that it matches re-
quirements from ICT4D use cases?”.

The rest of this paper is structured as follows: section 2
describes related works, such as the Kasadaka and some of
its applications, machine-to-machine communication in gen-
eral, and other projects that dealt with similar problems.
Section 3 offers some more depth into the problem descrip-
tion, effectively scoping the problem area and explaining our
approach to tackle it. Section 4 describes our solution from a

2http://kasadaka.com/

technical perspective. In section 5, our solution is evaluated
through experiments and evaluation results are presented.
Section 6 discusses the meaning of the results of the evalua-
tion as well as general aspects of the system. Furthermore,
limitations and known issues and bugs are listed. Section 7
concludes the paper with a brief summary and how future
works can build upon the research presented in this paper.

2. RELATED WORKS
This section covers some existing literature surrounding the
project presented in this paper. Topics related to the Kasadaka
and its applications, machine to machine communication,
and networks that can operate offline are covered.

2.1 The Kasadaka
The Kasadaka is a low-cost device based on a Raspberry
Pi3and is used to bring information and communication tech-
nology to several developing countries in Africa. It is built
to conform to the technical and non-technical constraints of
those countries and keeps the end-users’ situation in mind.
The Kasadaka uses a GSM dongle to connect to local GSM
networks (Baart, 2016). This allows applications that run
on the Kasadaka to implement some form of machine-to-
human communication by exposing data stored on the ma-
chine. This is often done through a voice interface. The
GSM dongle, along with Asterisk4, essentially allows people
to use their mobile phones to ”call” the Kasadaka device and
retrieve information stored on it or create new information.
Internally, the Kasadaka features a triple store to store data
and a number of Python programs to retrieve and exchange
data between the data store and Asterisk, which handles the
phone calls.

2.2 Applications
Several use cases have been developed into applications us-
ing the Kasadaka already (Lô & Blankendaal, 2016; de Boer
et al., 2012; de Boer, Bon, WaiShiang, & Gyan, 2016).
These applications implement common information services,
such as a marketplace and a veterinary information service,
among others. These simple applications can be very im-
pactful for the locals in rural communities as they take their
needs into account, which is often the need to share knowl-
edge. The shared principle behind these applications is to
make information — depending on the use case —available
to people by creating a service within an application that
runs on the Kasadaka. Because of a lack of technological
infrastructure and low literacy rates, information is often
spread through speech. Keeping those constraints in mind
while also making use of existing GSM networks often re-
sults in applications having voice interfaces. Several of these
applications are highlighted below.

2.2.1 RadioMarché
RadioMarché (de Boer et al., 2012) is a Market Information
System (MIS) that facilitates agricultural trade in rural com-
munities of developing countries. It allows people to put up
offerings of the products that they want to sell. These offer-
ings, along with contact details of the seller are all stored in
a triple store in RDf format. The stored data is aggregated

3https://www.raspberrypi.org/
4http://www.asterisk.org/

and eventually sent to broadcasting stations on a periodical
basis. These broadcasting stations broadcast product and
seller information regularly, allowing potential buyers to lis-
ten in to the radio stations and contact a seller if they are
interested in their product.

2.2.2 Digivet
DigiVet (Lô, 2016; Lô & Blankendaal, 2016) is a service that
provides information about animal diseases. The application
allows animal-owners and farmers to diagnose a sick animal
by answering questions. The diagnoses on the application
are stored in a decision tree structure, certain answers will
result in certain diagnoses. It is also possible to contact a
veterinary doctor if necessary, or provide the right care for
the animal themselves. The DigiVet application has multi-
ple ways of exposing information to a user. It contains a
voice-based interface that makes use of a GSM dongle with
Asterisk and the Kasadaka’s functionalities, as well as visu-
als that can be displayed with an attached LCD screen for
the Raspberry Pi.

2.3 Machine-to-machine communication
Machine-to-machine communication (M2M) refers to ma-
chines communicating with each other without the need of
a human element. Typical examples include data trans-
fer over the internet, or smart home devices communicating
with each other over a local Wifi or Bluetooth connection.
A particularly interesting example of M2M is the Nintendo
3DS Streetpass functionality5. A Nintendo 3DS is able to
communicate and exchange information with another 3DS
simply by passing by it, without having an internet connec-
tion available. When the lid of the 3DS is closed, it actively
looks for other nearby 3DS devices over a wifi-like network6.
When another 3DS is in range and detected, some data is
exchanged between the two devices, thus creating a ”street-
pass”.

M2M communication could be very useful in constrained
ICT4D projects, as it allows, by example of the 3DS’ Street-
pass, communication and exchange of data between devices
without the presence of an internet connection. M2M com-
munication in rural settings has been researched before, even
with the Kasadaka as a specific use case. The related work
described in the next subsections each show examples of
M2M communication.

2.3.1 SMS-based M2M communication
Valkering et al. introduced and implemented a method for
machine-to-machine communication using SMS messages as
a substitute for the Web to transfer semantic data in RDF
format (Valkering, de Boer, Lô, Blankendaal, & Schlobach,
2016). With the Kasadaka as a use case, semantic data
was succesfully transferred from one Kasadaka to another
through SMS messages. The SMS messages essentially con-
tain compressed SPARQL queries and their results. These
queries and their responses are sent back and forth over
SMS, thus transferring data in a similar way HTTP requests
and responses would. In order to reduce the number of SMS
messages required, various data compression methods were

5http://www.nintendo.com/3ds/built-in-software/
streetpass
6http://3dbrew.org/wiki/StreetPass

tested. The SMS-based communication method has been
applied and tested on the DigiVet and the RadioMarché ap-
plications that both run on the Kasadaka platform.

The SMS-based solution proposed by Valkering et al. aims
to solve the same goal; sharing data across devices without
using the internet. In comparison with the SMS-based solu-
tion, this paper presents an alternative solution to achieving
the aforementioned goal. The SMS-based solution is partic-
ularly limited by the fact that SMSes can only contain a set
number of characters, and cost a set amount of money. The
solution presented in this paper will not rely on SMSes as
a method of data transfer, but still uses the Kasadaka as a
baseline.

2.3.2 Entity registry system
The Entity Registry System (Charlaganov et al., 2013) de-
scribes a way of setting up a network such that it allows
devices to communicate offline locally, as well as commu-
nicate online when an internet connection is available. It
consists of three core types of components: Contributors,
Bridges, and a global server.

Contributors essentially create, update, retrieve and delete
data locally; these are the elements of a network that gen-
erate data that essentially needs to be available to other
Contributors. Bridges ensure some extent of data sharing
by connecting isolated clusters of Contributors. Data can
be shared through a synchronization that consists of two
steps: Sending new information from the contributors to the
Bridge, and sending data from the Bridge’s local storage to
the Contributors. Finally, the Global server collects every-
thing from each contributor through their Bridge, and makes
it accessible in read-only form from the Web. Bridges and
the Global server are optional components and are specifi-
cally used to enhance data availability. The Global server
makes data on the ERS available to the outside world, while
the Bridges make data available to other Contributors. This
essentially corresponds to global and local sharing of data.

The ERS aims to synchronize data across all Contributors
through the Bridges, which means there is a flow of data
between Bridges and Contributors. The solution presented
in this paper takes some inspiration from this. In terms of
Bridges and Contributors, our solution uses just a single, but
mobile Bridge. This Bridge passes by statically positioned
Contributors periodically, in order to push and pull data to
and from them.

2.3.3 The last inch of the last mile
DakNet, an ad hoc network that provides asynchronous net-
working capabilities to wireless devices in rural areas is a
working example of M2M communication in rural areas (Hasson,
Fletcher, & Pentland, 2003; Pentland, Fletcher, & Hasson,
2004). DakNet uses a ”store-and-forward” networking con-
cept that involves physically moving devices that send out
a wifi network, also known as mobile access points. In
the United Villages project (Hasson, 2010), DakNet was
implemented in rural parts of India, Cambodia, Paraguay,
Rwanda and Costa Rica. The projects included mounting a
wifi access point device on vehicles which would drive around
villages. Each village was equipped with one computer that
would broadcast its cached data and applications over a local

wifi hotspot. The villagers would have wifi-enabled devices
with which they could communicate with the computer that
broadcasts the hotspot, thus making use of the data and
applications contained on the computer. The mobile access
point vehicles would periodically visit the villages and ex-
change data with the local computers that broadcast the
hotspots, making it available to other devices through the
hotspot. This effectively created a network to bring informa-
tion and communication technology to rural communities.

The solution presented in this paper is heavily inspired by,
and very similar to DakNet; a moving vehicle that sends
out a local Wifi network and periodically sends data to or
receives data from other devices are similarities in both solu-
tions. A key difference, however, is that our solution uses the
Kasadaka as a baseline which is built using open standards,
whereas DakNet is a commercial solution. The Kasadaka
by default uses GSM networks and voice interfaces to make
information available, which means that end-users do not
need a wifi-enabled phone to communicate with Kasadakas.
In the case of DakNet, the local computer in each village
sends out a hotspot network, making wifi-enabled devices a
requirement to retrieve information.

2.3.4 Offline communication and file sharing
An interesting example of a network that can work com-
pletely offline is FireChat,7 a social networking app that
allows users to send public and private messages to other
users of the app. Using Bluetooth and peer-to-peer Wifi,
it creates a mesh network between phones that have the
FireChat app installed. Messages and files can be sent from
one node in the network to any other node. The message is
sent from node to node in the network until it is delivered
to the intended recipient. The range of communication be-
tween two nodes can be up to 200 ft/60 meters. End-to-end
encryption allows only the sender and the intended recipi-
ent to see the message. If at any point a node connected
to the network goes online, then that node can be used to
send long-range messages as well. The message can then be
sent to another online node that is geographically closer to
the intended recipient, or even the intended recipient itself
if they are connected to the internet.

A different example of an offline-capable networking device
is the PirateBox8. The PirateBox is a DIY-device that can
be built with cheap hardware components. Two devices can
be used as a base for a PirateBox: either a router or a Rasp-
berry Pi. The PirateBox hosts a Wifi network that other
devices can connect to. When connected, the PirateBox of-
fers functionalities like chat rooms and file sharing. The files
will be stored locally on the PirateBox and available to other
devices that are connected to it. The system can easily be
made portable as well, for example by powering a Raspberry
Pi with an external battery, solar panel, or a powerbank.
This makes the system mobile, meaning that it’s possible
to move around with the PirateBox, offering its functional-
ities to different users in different locations. Furthermore,
the PirateBox’s software is completely open source, mak-
ing it possible to customize and adapt for certain situations,

7https://play.google.com/store/apps/details?id=com
.opengarden.firechat&hl=en
8https://piratebox.cc/

possibly low-resource settings as well.

Both examples of offline communication share a certain as-
pect in common: physically moving components in order to
bring data from one device to another. In the FireChat app,
data is stored on a node of the network and passed on to
other nodes when they are in close proximity, which hap-
pens over Bluetooth or local Wifi. The PirateBox can do
the same; it contains data and files created by users, and if
the physical PirateBox moves elsewhere, new users can gain
access to the data and files created by others. The previ-
ously mentioned example of the 3DS’s StreetPass functional-
ity also contains physically moving components to exchange
data. This type of data sharing is inspired by sneaker nets,
which boils down to transferring data by physically bringing
it from place to place instead of over a computer network.
Sneaker net approaches can still be highly effective when
transferring large volumes of data (Gray, Chong, Barclay,
Szalay, & Vandenberg, 2002). Obviously, transferring data
this way comes with a high latency. This, however, is not
necessarily always a problem.

The solution presented in this paper is inspired by afore-
mentioned examples of offline-capable networks. It is built
using the PirateBox as a starting point to host local Wifi
networks. Combining the PirateBox with a sneakernet ap-
proach results in physically moving it to exchange data with
other devices. On paper, it seems like such an approach can
work under rural conditions. Furthermore, since the Pirate-
Box is an open source solution, it can be customized to fit
our specific needs. It contributes to keeping overall costs low
as well, as it is built with the same cheap hardware as the
Kasadaka.

3. PROBLEM DESCRIPTION
As mentioned previously, ICT4D projects tend to involve the
creation of tools that are tailored specifically for the target
audience. This is crucial, as end-users often do not have ac-
cess to technological infrastructure and have a limited tech-
nical skillset. The Kasadaka platform is one of those types of
tools; one that facilitates information sharing in rural areas.
Applications for the Kasadaka can be custom built, meaning
that wherever there is a particular need, an application that
offers a solution and satisfies that need can be built. How-
ever, due to limitations of the Kasadaka platform itself, not
every need can be satisfied. In particular, use cases that re-
quire Kasadaka’s to communicate or exchange data between
themselves or with other devices can be problematic due to
a lack of network infrastructure that Kasadaka’s could use
efficiently to communicate. The goal of this project is to de-
velop a method that makes it easier for Kasadaka’s to share
their data, thus enabling new use cases for the platform as
a whole.

Using the Kasadaka as a baseline, this project will develop
an extension for the Kasadaka platform that solves the com-
munication problem to some extent. Similar to the SMS-
based solution (Valkering et al., 2016), this project will tackle
the same M2M communication problem. The difference,
however, lies in the fact that completely different techniques
will be used to approach the problem. The approach used
here is based off of pre-existing work and concepts, specif-

ically the notions of sneakernets9, DakNet, and the Wifi-
donkey10 are used as an inspiration to create a M2M com-
munication method that can facilitate data-sharing in rural
conditions. The common denominator between those con-
cepts is the fact that there is a moving component in the
system as a whole. Typically, transferring data goes through
the internet. In rural conditions, however, the internet is ei-
ther not available or not reliable enough, which sparks the
development of alternative communication methods.

The approach we use is rather similar to the way StreetPass
on the Nintendo 3DS works. As two devices pass by each
other, there is just a brief moment where the devices are in
range of each other. During this short timeframe, data can
be exchanged. Kasadaka’s are usually geologically spread
out and stationary. For a pass-by to occur, a second device
—something that can communicate with Kasadaka’s in some
way— would need to physically move through the range of
a stationary Kasadaka. Given the simplicity of the task,
equipping a donkey with a small device may not be such a
bad idea at all. Often times NGO’s are also active in these
rural areas. If they are willing to collaborate, using their
vehicles may also be a realistic possibility.

Figure 1: Example situation

Figure 1 visualises the core of the problem. A city with
internet access and two rural villages are depicted. The vil-
lages are both equipped with a Kasadaka. Over time, data is
generated locally on each Kasadaka by the users in that vil-
lage. Up until recently, getting data from one Kasadaka to
another or to the city where it can be published online was
not easy. The SMS-based solution (Valkering et al., 2016)
facilitates this to some extent, but is limited in the sense that
it costs a set amount of money per SMS, and only certain
types of content can be transferred over SMS, which does
not include audio or image files for example. This is where
the Wifi-donkey, depicted as a bus in figure 1, could make
a difference. When the bus is in range of a Kasadaka, data
exchange is possible. This happens for every village the bus
visits. Eventually the bus will reach the city again, where,
for example, data stored on the Wifi-donkey can be made

9https://what-if.xkcd.com/31/
10http://techland.time.com/2012/08/21/wi-fi-donkey-
brings-new-tech-to-an-old-world/

available online or all the aggregated data can be analyzed.

3.1 Example use cases
Having a method to push and pull data to and from geo-
graphically distributed Kasadaka’s will open up the Kasadaka
platform to new use cases. This section details two example
use cases that could be fulfilled with the Wifi-donkey.

The first use case we describe is that of aggregating data of
multiple villages. For example, if somebody wants to know
how much of a particular product, say milk, was sold in
each village through the RadioMarché application. In this
case, a SPARQL query that retrieves the milk sales data
can be written and loaded on the Wifi-donkey. Then, as
the Wifi-donkey-equipped bus visits each village, the query
is executed on each Kasadaka. The query results, which
should contain milk sales data, will be stored on the Wifi-
donkey. When the bus has made a full circle, the milk sales
data from each village will be ready for analysis.

A second use case is where each village’s Kasadaka can be
”updated”, in the sense that new data can be pushed to
its triple store. This would work similar to the first use
case; there is no change in the fact that the Wifi-donkey is
mounted on a vehicle which visits each village. The differ-
ence lies in the query that is loaded on to the Wifi-donkey
initially; with an INSERT statement in the SPARQL query,
data can be inserted into each Kasadaka’s triplestore.

4. KASADAKANET
In this section we present our solution to the communication
problem. Our solution, KasadakaNet, is a prototype for a
machine-to-machine communication method that facilitates
offline data sharing between graphically distributed devices.
It consists of two main components: The Wifi-donkey, which
is a customized PirateBox device, and a set of geographically
distributed Kasadakas. This section covers the technical as-
pect of KasadakaNet. Technical challenges and their solu-
tions, design decisions that were made along the way, and
an overall view on the internal workings of KasadakaNet are
discussed.

4.1 Setting up the foundation
The development phase of this project was done in several
iterations. This allowed us to start with a solid founda-
tion and continue to build upon that. Preparatory research
and brief exploration of different concepts and ideas revealed
several different approaches, such as sending data through
soundwaves11 or through radio frequencies12. One of the
other approaches we found was the PirateBox13, an open
source project that essentially creates an offline network-
ing device using relatively cheap hardware components. As
explained in detail in the Related Works section, the Pirate-
Box was an ideal approach as it takes some of our constraints
into consideration, such as being cheap, open sourced and
low-maintenance. Development thus started with a clean
installation of the PirateBox project using a Raspberry Pi
3.

11https://www.chirp.io/
12https://www.youtube.com/watch?v=Ueb5JG0dCL8
13https://piratebox.cc/start

4.2 Technical challenges
A simple file-based M2M communication method could al-
ready be realized with just a PirateBox, as the PirateBox by
default hosts a Wifi network and allows connected devices
to upload and download files over HTTP. However, man-
ual file up- and download was not enough. Since we were
using the Kasadaka platform as a use case, we needed to in-
volve Semantic Web technologies in some way. File up- and
download is a nice-to-have, but more importantly we needed
the ability to exchange semantic data over HTTP. In light
of M2M communication, we needed to remove the human
element as much as possible as well; the system should be
able to exchange data without a human manually triggering
actions. These were the two main challenges faced during
development of KasadakaNet.

In order to solve the first challenge, ClioPatria14 was in-
stalled and set up on the Wifi-donkey. ClioPatria is a web-
server that includes many Semantic Web related function-
alities, most importantly the ability to send and receive
SPARQL queries over HTTP and is also installed on the
Kasadakas. Therefore it made sense to keep consistent with
tools that were already in place. Internally, data on a typi-
cal Kasadaka is stored in triples which are exposed through
a ClioPatria webserver. This data can be queried using
SPARQL, and new data can be created as well. We used
this to facilitate the exchange of semantic data between the
Wifi-donkey and a Kasadaka.

For the second challenge, we made some alterations to the
Kasadaka. Since the Wifi-donkey was hosting a local Wifi
network, we needed the Kasadakas to detect this network
when it is in range. Once detected, the Kasadakas should
be able to connect to the network, thus enabling the ability
to exchange data with the Wifi-donkey. This challenge was
solved by means of a continuously running script that checks
whether the Wifi-donkey’s network is in range and connects
to it if it is. Specific details of this script can be found in
section 4.3.2.

Additionally, the Wifi-donkey was also made to detect when
a client device connects to its network. When that happens,
it automatically sends out pre-defined SPARQL queries over
HTTP to the newly connected device. In doing so, we man-
aged to further automate the exchange of semantic data
within the system.

4.3 System as a whole
The entire system consists of two major components: A set
of Kasadakas that are geographically spread out, and the
Wifi-donkey that is mounted on a vehicle. In simple terms,
the Wifi-donkey needs to host an offline network, and the
Kasadakas need to be able to detect that network and con-
nect to it when it is in range. When a connection is estab-
lished, the Wifi-donkey can exchange data over HTTP with
the connected Kasadaka. This overview is depicted in figure
2. This section describes the internal workings of the two
parts of the system and how this was achieved. The scripts
and configuration files for both the Wifi-donkey and the
Kasadaka are available on github at https://github.com/

14http://www.swi-prolog.org/web/ClioPatria/
Overview.html

fahad105/masterproject.

Figure 2: System overview

4.3.1 The Wifi-donkey
In a nutshell, the Wifi-donkey has two responsibilities. These
are 1) hosting a wireless network and 2) running a SPARQL
query on any Kasadaka that connects to its wireless network.

Hosting a network that other devices can connect to is one of
the functionalities that the PirateBox offers out of the box.
Because we made use of the Raspberry Pi 3, which has built-
in WiFi capabilities, we did not require a separate WiFi don-
gle. The on-board WiFi card is used by the PirateBox to
host a network. This is done through several linux packages,
specifically hostapd15 and dnsmasq16. The hostapd package
is what turns the Raspberry Pi into an access point. This es-
sentially makes it send out a detectable wifi network. Addi-
tionally, the dnsmasq package is what handles DHCP leases
for devices that connect to the network and provides a lo-
cal DNS server. Adding a basic webserver along with some
simple webpages yields the default PirateBox installation;
a device that sends out a network and shows a webpage to
connected devices through which they can upload and down-
load files. This functionality was already working neatly out
of the box, so no significant changes were made to this.

Running SPARQL queries that target the ClioPatria web-
server of any Kasadaka the moment it connects to the Wifi-
donkey’s network was part of both technical challenges; it
involves the exchange of semantic data as well as automating
the process of data exchange. The first step was to be able to
detect the moment when a device connects to the network.
the dnsmasq package offers several basic dhcp functional-
ities, but also allows custom scripts to be executed when
certain dhcp events occur. These events could either be
the addition of a new dhcp lease, re-activation of an existing
dhcp lease, or deletion of a dhcp lease. By default, leases are
valid for 2 hours. Changing the lease duration does not have
any impact on the way the Wifi-donkey works. It might be
a useful parameter if the Wifi-donkey’s network would have
many devices connected at the same time, but that is not
the case for this project.

The code snippet below shows the relevant part of the dns-
masq configuration file. The entire configuration file is avail-
able on Github17.

15https://wireless.wiki.kernel.org/en/users/
documentation/hostapd

16https://wiki.debian.org/HowTo/dnsmasq
17https://github.com/fahad105/masterproject/blob/
master/donkeybox/dnsmasq_default.conf

dhcp -script =/opt/piratebox/rpi/bin/

runquery.sh

The snippet shows that a custom script, called runquery.sh,
is triggered on dhcp events. This custom script is triggered
with several additional arguments. These arguments18 are:
the operation, which is either ”add”, ”del”, or ”old”, the MAC
address of the connected device, the assigned IP address of
the device, and the hostname of the device if there is one.
As an example, the script could be triggered by dnsmasq
like this:

/opt/piratebox/rpi/bin/runquery.sh add

b8:27:eb:5d:7e:74 192.168.77.18 kasadaka

The runquery.sh script is shown in the code below.

1 op="${1:-op}"

2 mac="${2:-mac}"

3 ip="${3:-ip}"

4 hostname="${4}"

5
6 echo "${op} | ${mac} | ${ip} | ${hostname}

" >> /opt/piratebox/tmp/dhcpchanges.

txt

7 if [[${op} = "add" || ${op} = "old"]] ;

then

8 QUERY=$(cat /home/pi/kasadakanet/query.

txt)

9 mkdir -m 777 -p /home/pi/kasadakanet/

results/${mac}

10 /usr/bin/curl ${ip }:3020/ sparql/ --data -

urlencode "query=${QUERY}" > /home/

pi/kasadakanet/results/${mac}/

queryresult.rdf

11 echo "ran query on ${ip}" >> /opt/

piratebox/tmp/dhcpchanges.txt

12 fi

As shown in lines 4 through 7, the arguments the script was
called with are now available as variables in the script itself.
This script first checks whether the operation was ”add” or
”old”, because if that is the case then either a new device
has connected to the network or a device has reconnected
to the network. In this scenario we want to do something;
we want to run a SPARQL query on the connected device’s
ClioPatria server using the curl package and store the result
of the query in a folder somewhere on the Wifi-donkey. By
default, all Kasadaka’s have a ClioPatria server running on
port 3020. As shown previously, we already have access to
the IP address, the MAC address and the hostname within
this script. That means we know exactly where the ClioPa-
tria server of the connected Kasadaka is running. Going by
the previous example, this would be at 192.168.77.18:3020.
Knowing this, we can construct a curl command that sends
a query to that IP address and port, and store the result in
an RDF file. The query itself is stored in a separate text
file, and contains a simple SPARQL query. Line 11 of the

18https://www.systutorials.com/docs/linux/man/
8-dnsmasq/

script retrieves the contents of this text file and puts it in
a variable. To ensure that the query result is stored cor-
rectly, we need to make sure that the folder where the result
will be stored exists and read, write and execute permis-
sions are given for this folder. That is what line 12 does;
it creates a directory (only if it does not exist yet) with the
MAC address of the connected device as its name, which en-
sures that the created directory is unique. Read write and
execute permissions are then set for this folder. With the
IP address, the query, and the folder for the query result
ready, we can execute the curl command to run the query
and store the result in a file called queryresult.rdf in the ap-
propriate folder. This is done on line 13 of the script. The
command also makes use of –data-urlencode as the contents
of the query’s text file is likely to contain spaces, tabs or line
breaks. Obviously, if port 3020 at the targeted IP address is
not running, which could be because the connected device
is not a Kasadaka or the ClioPatria server is not running at
that port for some reason, then the queryresult.rdf file will
be empty.

With this, the Wifi-donkey is able to accumulate data from
different Kasadaka’s and store that data in RDF files. The
Wifi-donkey hosts its own ClioPatria server as well, a ClioPa-
tria server with some dummy market data from the Ra-
dioMarche application was used during development and
testing. This server is set up to start on boot, as con-
figured in the radiomarche initd script script19 and the ra-
diomarche folder20 on Github. This script should be placed
in /etc/init.d on the Wifi-donkey. Since the Wifi-donkey is
running its own ClioPatria server at port 8910, accumulated
RDF files can easily be imported. This can be done either
through the ClioPatria web interface or through curl. As-
suming the current directory contains a file called queryre-
sult.rdf, the queryresult.rdf file can be imported with the
following curl command:

curl -v -F data=@queryresult.rdf -F

baseURI="http ://192.168.77.1:8910/ demo

/result/" http ://192.168.77.1:8910/

demo/servlets/uploadData

With this, the Wifi-donkey is able to exchange semantic data
through SPARQL queries with the Kasadakas and import
the accumulated data into its own ClioPatria webserver,
thus solving the first technical challenge. Additionally, the
second technical challenge is also partly solved as the Wifi-
donkey automatically detects when a device connects to its
network and sends out the SPARQL queries. the remain-
ing part of the second challenge is solved on the side of the
Kasadaka.

4.3.2 The Kasadaka
The remaining part of automating the process of data ex-
change was solved by altering the Kasadaka. Specifically,
the Kasadaka was made to detect when the Wifi-donkey is
in range and connect to its network. This was accomplished

19https://github.com/fahad105/masterproject/blob/
master/donkeybox/radiomarche_initd_script

20https://github.com/fahad105/masterproject/tree/
master/donkeybox/radiomarche

with a script21 that runs continuously in the background on
the Kasadaka.

The script, called networkmonitor.sh, is triggered on boot
on the Kasadaka. this was done by adding the following the
line on the rc.local configuration file of the Kasadaka. The
entire rc.local file can be found on Github22.

/etc/network/networkmonitor.sh &

The networkmonitor.sh script is shown in the code below.

1 sleep 30

2 while true; do

3 if iwconfig wlan0 | grep -q "KasadakaNet

" ; then

4 echo "connected to KasadakaNet"

5 sleep 1

6 else

7 echo "scanning for KasadanaNet ..."

8 if iwlist wlan0 scanning | grep -q "

KasadakaNet" ; then

9 echo "Found KasadakaNet ,

reconnecting ..."

10 service networking restart

11 sleep 5

12 else

13 sleep 1

14 fi

15 fi

16 done

The script starts with a 30 second sleep timer, this is neces-
sary because the script is executed on boot. The 30 second
timer is set in order to give other startup services, specifi-
cally the networking interfaces of the Raspberry Pi, time to
fully get up and running. The script then continues with a
while loop that runs on infinitely. Inside the loop, the script
first checks whether the Kasadaka is currently connected
to the Wifi-donkey’s network, which is called KasadakaNet.
This happens every second. If at some point the device is not
connected to KasadakaNet, then the script checks whether
KasadakaNet is in range. If it is not in range, the loop will
continue with the next iteration after 1 second. If it is in
range, the Kasadaka will restart its networking interfaces, as
seen in line 10 of the script. This will connect the Kasadaka
to the network once the networking interfaces are back up,
as this is configured in the wpa supplicant.conf 23 file of the
Kasadaka. This restart of the networking service takes a few
seconds, which is why the script waits for 5 seconds before
continuing with the loop. If a connection was established
succesfully, in the next iteration of the loop the script will
detect that the device is connected to the network. The
sleep timers inside the while loop are kept as short as possi-
ble in order to ensure that a connection with the network is
established as fast as possible. However, as this entire script

21https://github.com/fahad105/masterproject/blob/
master/kasadaka/networkmonitor.sh

22https://github.com/fahad105/masterproject/blob/
master/kasadaka/rc.local

23https://wiki.archlinux.org/index.php/WPA
_supplicant

runs continuously in the background, shorter sleep timers
result in more frequent iterations of the loop, which likely
increases resource usage of this script on the entire device.

During development, reconnection speeds were measured us-
ing this script. Consider the following scenario; a Kasadaka
and the Wifi-donkey are right next to each other (clearly
in range), the Kasadaka is fully booted up and powered on,
while the Wifi-donkey is completely turned off. This means
that there is no connection between the two devices as the
Wifi-donkey is not hosting a network. From the moment the
Wifi-donkey is turned on, roughly 30 to 35 seconds are re-
quired to establish a connection. This also includes startup
time on the Wifi-donkey’s side, because the device starts
from a complete shutdown. This startup time was estimated
at roughly 20 seconds. This was done with line 9 of the net-
workmonitor script, a simple echo statement which indicates
that the network has been detected. This means that from
the moment the Wifi-donkey is powered on, roughly 20 sec-
onds were measured until the script echo’s that the network
was detected. The remaining 10 to 15 seconds were thus
measured from line 9 of the script until the next iteration
of the while loop (which then echo’s that the device is con-
nected to KasadakaNet). Therefore, in an ideal situation
where both devices are already powered on but not in range
of each other, it will take roughly between 10 and 15 sec-
onds to establish a connection. This does not, however, take
into consideration the time it takes for a SPARQL query to
be executed and a query result to be passed back. These
measurements are key in deciding whether a pass-by will be
successful or not, as during a pass-by there is only a limited
amount of time in which the two devices are in range of each
other. For example, if it takes 15 seconds to establish a con-
nection and, say, 5 seconds to exchange a certain amount
of data through SPARQL during a pass-by, we would need
the two devices to be in range of each other for at least 20
seconds in order to have a successful pass-by.

4.3.3 Reversing the roles of client and server
Looking at the system from a client-server model perspec-
tive, the Wifi-donkey fulfills the role of a client and the
Kasadaka would be a server. This is because all transfer of
data is initiated by the Wifi-donkey. Specifically this means
that the Wifi-donkey, the client, sends all HTTP requests to
the servers, which would be the ClioPatria webserver hosted
on each individual Kasadaka. Because the Wifi-donkey also
runs its own ClioPatria webserver, the opposite is technically
also possible; in this case the Kasadaka would be initiating
all HTTP requests, and the target of those requests would be
the ClioPatria server of the Wifi-donkey. This reverse func-
tionality was also experimented with during this project,
but was not of no further use for the system as a whole. It
is therefore disabled in this version of the system, but this
functionality might be of use for future projects. The rest
of this section briefly explains the reverse functionality, e.g.
how the Kasadaka can be used as a client that sends requests
to the ClioPatria webserver of the Wifi-donkey.

As explained previously, the Kasadaka’s only responsibility
within the system is to detect the Wifi-donkey’s network and
connect to it. This is done in the networkmonitor.sh script,
specifically on line 10 of that script. Once the networking
interface is back up, a custom script can be executed. This

is done by adding the following line to the interfaces file24

of the Kasadaka:

post -up /bin/bash /etc/network/

mypostupscript

The code snippet below shows a simple example of how the
Kasadaka can initiate different curl commands that target
the IP address of the Wifi-donkey.

1 if ["$IFACE" = wlan0]; then

2 /usr/bin/curl -F "upfile=@/home/pi/

kasadakanet/file.txt"

192.168.77.1:8080

3
4 QUERY=$(cat /home/pi/kasadakanet/query

.txt)

5 /usr/bin/curl 192.168.77.1:8910/ demo/

sparql/ --data -urlencode "query=${

QUERY}" > /home/pi/kasadakanet/

queryresult.rdf

6 fi

We first need to check which networking interface triggered
the script, because a device can have multiple networking in-
terfaces. Since we use the wlan0 interface to connect to the
Wifi-donkey’s wireless network, we can simple do a check on
the $IFACE variable, which is passed to the script when it is
called. After the check, we can use the Wifi-donkey’s local
IP address, which is always 192.168.77.1, to make HTTP re-
quests with curl. We can, for example, use port 8910 on the
Wifi-donkey’s IP address to target the ClioPatria webserver
just as the Wifi-donkey does with any Kasadaka’s ClioPatria
webserver. Furthermore, port 8080 can be used to upload
files to the Wifi-donkey. This port is configured out of the
box by the PirateBox installation. Such a file upload func-
tionality could be useful when there is a need to transfer
audio files to the Wifi-donkey, for example.

5. EVALUATION
The Wifi-donkey was used in an experimental setting to eval-
uate its performance. This experiment was conducted in
Amsterdam. A true evaluation would require an experiment
in a rural Sub-Saharan setting, however this was not possible
within the scope of this research project. Section 5.1 details
the experiment’s setup, execution, and what variables were
measured. In section 5.2, the results of the experiments are
presented and discussed. Finally, in section 6 we discuss
the overall performance and limitations of the system and
to what extent the evaluation results can be expected to
transfer to a Sub-Saharan context.

5.1 Experimental setup
The goal of the experiments is to find out to what extent, if
at all, a ”pass-by” is possible without losing the ability to ex-
change data. Statistics regarding the system’s reliability and
data transfer speed were measured during the experiments.
Specifically, the success rate of pass-bys, and the amount of
time in seconds it takes to transfer different amounts of data

24https://github.com/fahad105/masterproject/blob/
master/kasadaka/interfaces

were measured. Two different experiments were done; one
where pass-bys were simulated as closely as possible, and
another experiment that specifically measures the manner
in which the amount of time scales along with the amount
of triples that need to be transferred.

5.1.1 The pass-by experiment
The basic setup of the pass-by experiment consisted of one
Kasadaka powered by a 5v powerbank, and one Wifi-donkey
powered by a regular 5.2v power supply. As it turns out, the
Wifi-donkey does not function properly when powered with
a 5v powerbank. While it did send out the KasadakaNet net-
work, connecting to the network and accessing the ClioPa-
tria webserver was not possible. One possible explanation
for this is the powerbank not delivering enough electricity
to power the Wifi-donkey, which heavily uses the on-board
Wifi-module. It is likely that 5v simply is not enough to
power a Raspberry Pi 3 in this case, as the official power
supply delivers 5.1v as well25. The Kasadaka, however, did
function properly with the 5v powerbank that was available.
As a result, the decision was made to move around with
the powerbank-powered Kasadaka during the experiments
instead of the Wifi-donkey. Assuming that the communica-
tion range of both Raspberry Pi’s is the same, this should
not have any significant impact on the evaluation results. As

Figure 3: The Wifi-donkey taped to the railing of a
balcony

seen in figure 3, the Wifi-donkey—powered by a 5.2v power
supply—was taped to a balcony, as far out as possible in
order to prevent the brick wall from limiting its range.

25https://www.raspberrypi.org/documentation/
hardware/raspberrypi/power/README.md

With the Wifi-donkey in place and a Kasadaka ready to
move, the experiment could be executed. It consisted of two
parts: measuring the range of the Wifi-donkey’s network,
and repeatedly performing a ”pass-by” that starts and ends
outside the network’s range. These steps are explained in
detail in the next two paragraphs.

5.1.1.1 Measuring communication range.
Measuring the communication range of the Wifi-donkey was
done step by step - literally. By default, if a Kasadaka is not
connected through an ethernet cable and the KasadakaNet
network is not available, it will host its own network called
KasaDaka Wifi Foroba-blon. This network is used for other
applications and projects, and of no further relevance to this
project. However, the fact that it sends out its own network
initially and stops doing that the moment KasadakaNet is
in range can be used to estimate the communication range
of the two devices. This was done by initially determining
an estimate of the outer edge of the network, specifically by
using a smartphone’s WiFi scan capabilities to detect the
network’s signal strength. Figure 4 shows three screenshots
that were taken increasingly further away from the Wifi-
donkey, resulting in a decreasing signal strength. When the
signal strength is at its lowest but the network can still be
found, we know that we are near the edge of the network’s
range. This gives a rough indication of where the two devices
are in range of each other for the first time during a pass-by.

Figure 4: Screenshots of KasadakaNet’s signal
strength on a smartphone

The next step was to take several additional steps further
out until it is certain that the network is not in range. At

this point, powering up the Kasadaka resulted in it hosting
the KasaDaka Wifi Foroba-blon network because a) an eth-
ernet connection was not available, and b) the KasadakaNet
network was not in range. As explained in section 4.2.2, it
can take up to 15 seconds to establish a connection between
a Kasadaka and the Wifi-donkey, assuming both devices are
powered on, which was indeed the case. Knowing this, the
communication range of the Wifi-donkey could thus be es-
timated more precisely by repeatedly taking one step in the
direction of the Wifi-donkey and waiting at least 15 sec-
onds. If after waiting at least 15 seconds the KasaDaka Wifi
Foroba-blon network could still be detected on for example a
smartphone, then the devices are still outside of each other’s
range. Repeating this process until the two devices are just
barely in range will result in the KasaDaka Wifi Foroba-blon
network being turned off and a connection being established
between the Kasadaka and the Wifi-donkey. This way, a
single point very close to the edge of the network could be
pinpointed. This entire process was done two times, each
in opposite directions of the Wifi-donkey. Figure 5 shows
both spots on a map as blue squared, and indeed roughly in
the middle of the distance between the two spots was where
the Wifi-donkey was mounted on a balcony. Using Google
Maps, the distance between the two blue squares is mea-
sured at roughly 120 meters. The red circle estimates the
entire range of KasadakaNet’s range, obviously assuming the
absence of signal interference or other physical obstructions
that could limit the network’s range.

Figure 5: Estimate of the Wifi-donkey’s communi-
cation range based on two measured spots

5.1.1.2 Measuring performance of the system.
The actual experiment essentially consisted of traversing a
path that starts outside of the network’s range and contin-
ues all the way through it, as seen in figure 6. The time a
Kasadaka spends within the network’s range during a ”pass-
by” is an important factor in deciding whether data is re-
trieved successfully or not. Additionally, how much data
needs to be transferred, which obviously varies per query,
is also an important factor. A worst case scenario, for ex-
ample, would consist of a vehicle that travels in and out of
the network’s range very fast while the Wifi-donkey is con-

figured with a query that would result in a large amount
of triples. As such, we define two independent variables for
this experiment.

The first independent variable is the speed at which the per-
son carrying the Kasadaka travels. Measuring travel speed
precisely is a rather difficult task without appropriate equip-
ment, therefore the distinction in speed was made by either
walking at a decent pace, or using a bicycle. In total, the
experiment was repeated 12 times, half of which were with
a bicycle and the other half without it.

The amount of data that needs to be transferred is the sec-
ond independent variable. This obviously depends on the
query, as that decides how big the result will be. The fol-
lowing query was used during the experiment:

PREFIX rdf: <http ://www.w3.org /1999/02/22 -

rdf -syntax -ns#>

PREFIX rdfs: <http ://www.w3.org /2000/01/

rdf -schema#>

CONSTRUCT {

?sub ?pred ?obj .

}

WHERE{

?sub ?pred ?obj .

}

LIMIT 30

}

This simply retrieves the first 30 triples contained in triple
store of the targeted ClioPatria server. In order to vary
the amount of data that is transferred during a pass-by, the
”LIMIT” parameter of the query was changed to a number
larger than the total amount of triples on the server. This
means that the two variations of this query retrieved either
30 triples, or all triples on the server, which was 322 triples.

Figure 6: Path traversed during a pass-by

Essentially there were 4 possible combinations of the in-
dependent variables; walking + 30 triples, walking + 322
triples, biking + 30 triples, and biking + 322 triples. Each
of these combinations was executed 3 times, thus totalling

to 12 pass-bys. This includes an initial trial run of the ex-
periment, consisting of 2 pass-bys done on foot.

As mentioned previously, results of the curl command on
the Wifi-donkey are stored in a file called queryresult.rdf per
unique device, based on its mac address. For the purpose
of the experiment, the curl command that executes HTTP
request containing the query was slightly altered. Specif-
ically, the ”-w” argument was configured to append some
statistics about the entire command at the end of the result
file. Two things were added: the total time in seconds it
took to complete the entire command, and the total amount
of bytes that were downloaded which equals the size of the
queryresult.rdf file in bytes.

By default, any pre-existing file called queryresult.rdf will
be overwritten. In order to log the results of each pass-by,
the queryresult.rdf file needed to be copied and stored in
a separate folder where it wouldn’t be overwritten. For ef-
ficiency, the experiment was executed with assistance of a
second person. One person repeatedly performed a pass-
by, and the other ssh-ed into the Wifi-donkey and copied
the queryresult.rdf files per pass-by, effectively logging the
experiment’s results. Throughout the experiment, both per-
sons would communicate and coordinate over the phone.

5.1.2 Transferring data on larger scales
A separate experiment was done to evaluate the performance
of the system when larger amounts of data need to be trans-
ferred. The setup consisted of one Kasadaka and one Wifi-
donkey, both powered by 5.2v power supplies, in close prox-
imity of each other. The experiment did not involve phys-
ically moving either of the devices to simulate a pass-by,
instead both devices were powered on and in close proxim-
ity of each other throughout the entire experiment. HTTP
requests were then fired off manually with curl after ssh-ing
into the Wifi-donkey. During the pass-by experiment, a total
of 322 triples were loaded on the Kasadaka, thus limiting the
data transferred during pass-bys to 322 triples. In order to
measure the request times for larger amounts of data, more
triples were required to be loaded on the Kasadaka. For the
purpose of this experiment, a dataset of 475000 triples was
imported on the Kasadaka’s triplestore through ClioPatria,
effectively allowing larger queries to be performed.

During the experiment, a total of 35 HTTP requests were
sent. These requests were split into 7 categories, each cate-
gory with a larger query size than the previous. The number
of triples requested per category scaled as such: 30, 300, 1k,
5k, 10k, 50k, 100k. Five requests were sent per category,
which totals to 35 requests. The request time in seconds and
the size in bytes were measured per request. Per category,
the average of the time in seconds was computed. Averag-
ing the size in bytes makes little sense, because the size in
bytes yields exactly the same value per request within a cat-
egory, as each category corresponds to a single query, and
that same query will always return the exact same result.

5.2 Results
The results of the various experiments are presented in this
section. Table 1 contains the results of the pilot pass-by
experiment, and table 2 contains the results of the full pass-
by experiment. As Table 1 only shows results of 2 pass-bys,

the data there is presented in a complete format, whereas
Table 2 only presents the success rate, i.e whether a pass-by
resulted in a successful transfer of data. All raw data from
the pass-by experiment can be found in Appendix A.

Table 1: Pilot pass-by experiment results
Method Triples Bytes Request time Result
Walking 30 1960 2.859 sec Success
Walking 322 16718 18.223 sec Failure

Table 2: Full pass-by experiment results: success
rate

Query size /
Method

30 triples 322 triples

Walking 2/2 2/2
Biking 3/3 2/3

The results of the scaling experiment are presented in ta-
ble 3 and plotted in figure 7. Raw data from the scaling
experiment can be found in Appendix B.

Table 3: Scaling experiment results: Average time
in seconds per category

of triples transferred Average time in seconds
30 0,3422
300 0,2582
1k 0,5374
5k 1,7864
10k 3,1558
50k 14,3342
100k 29,4238

As seen in table 1, it took 2.859 seconds to transfer 30 triples,
or 1960 bytes. As for the larger query of 322 triples, the
request lasted 18.223 seconds and ultimately failed, likely
due to a loss of connection between the two devices.

Comparing tables 4 and 5 in the Appendix with table 1, a
significant difference in request times can be noticed. Per-
formance was significantly better during the full pass-by ex-
periment than during the pilot experiment. The source of
this discrepancy is not clear, however it should be noted that
the pilot pass-by experiment and the full pass-by experiment
were not conducted on the same day. The Raspberry Pi that
was secured to the balcony with tape was also re-taped in
between the experiments. We suspect that the discrepancy
in the request time results may have been caused by the
amount of tape used during the pilot experiment. Pieces
of tape might have directly covered the chip antenna of the
Raspberry Pi which can hinder signals, though this is mostly
speculation at this point. Another potential clarification for
the discrepancy could be external signal interference in the
street. It is of course quite possible that, depending on the
time of day or day of week, there may be more active wireless
devices in the vicinity. This might have caused the connec-
tion between the two Raspberry Pi’s to slow down or even
interrupted.

In general, the pass-by experiment’s results show that the
system as a whole seems to work fairly reliably; only one

Figure 7: Scaling experiment results: time scales
linearly with amount of triples transferred up to at
least 100k triples

out of 10 pass-bys failed. As explained previously, once
the Kasadaka connects to they Wifi-donkey’s network, a
SPARQL query is executed. The result of this query is then
stored in a file on the Wifi-donkey. In the case of the failed
pass-by, the output file was not created, which likely means
that, for unknown reasons, the two devices failed to connect
during the pass-by.

Another interesting aspect of the pass-by experiment’s re-
sults is that there is no significant or consistent difference
in request times between the 30 triple queries and the 322
triple queries, as some 322 triple queries had shorter request
times than some 30 triple queries. This seemed very counter-
intuitive at first. The scaling experiment, however, provided
an explanation for this. As seen in 7, the request time clearly
scales linearly. It seems that it takes some time for transfer
speeds to ramp up and reach a maximum; the larger the
query, the more data that needs to be transferred, and the
more data that needs to be transferred, the more time there
is for transfer speeds to ramp up and reach the maximum.
Smaller queries are simply completed before transfer speeds
reach their maximum, which results in an irregular, non-
linear scaling in the request times as shown in the pass-by
experiment’s results.

6. DISCUSSION
The evaluation shows that the system performs well enough
for pass-by communication to work, albeit on travel speeds
lower than those of a car or bus. In those situations, where
a car or bus passes by without stopping, the success rate is
likely to be significantly lower or the system may not work
at all. When querying smaller numbers of triples, the vast
majority of the total time needed for a pass-by comes from
the 10-15 seconds needed to establish a connection between
the two devices. To put this into perspective, transferring
1000 triples takes only half a second, which is a result from
an experiment conducted in a simulated setting where signal
interference could not be measured. This means that if a ve-
hicle passes through the 120 meter range in less time that the
time it takes to establish a connection and exchange data,
the pass-by will fail. This is a clear point where the Wifi-
donkey could be improved; bringing down the time it takes
to establish a connection would greatly improve chances of

successful pass-bys in cars or other fast vehicles.

Signal interference is another factor that might have im-
pacted the experiment’s results, it could easily have caused
the system to not perform optimally. In real situations in
rural parts of the world there is likely to be less signal in-
terference, which can result in higher chances of having a
successful pass-by.

The system functions as intended, but there are some limita-
tions as well. The system as a whole has a very high latency
for example, albeit by design. It simple takes a while for the
Wifi-donkey to complete a full circle in an area, obviously
depending on the distance that needs to be traveled. An-
other limitation is the fact that some human input is still
required; as a preparatory step a person with a technical
background needs to load a text file containing a SPARQL
query onto the Wifi-donkey. This is quite critical, as the
system can not do much without a query to execute. Addi-
tionally, once the circle is complete and a number of RDF
files from different Kasadaka’s have been gathered, human
input is again required to analyze the acquired data.

As mentioned before, the system was only tested in Amster-
dam, and not under rural conditions. Despite this, we know
that the system works fairly reliably, at least within the
conditions it was tested in. The evaluation shows that the
system works in an urban area and can reliably transfer up
to 300 triples during a pass-by done on a bicycle. Assuming
that there is less signal interference in rural areas and both
devices are supplied with enough power during a pass-by, we
can deduce that the system should work under rural condi-
tions when transferring a similar amount of triples during a
pass-by at similar travel speeds. At faster travel speeds how-
ever, pass-bys might fail. In order to accommodate for these
scenarios, a possible solution is to instruct vehicles that have
a Wifi-donkey mounted on them to briefly stop in range of
the Kasadakas. This should theoretically ensure a success-
ful pass-by as there is more time to establish a connection
and exchange data. Specific instructions for the drivers of
the vehicles would need to be discussed with them directly.
Furthermore, NGO’s may be willing to assist the project
by allowing Wifi-donkey’s to be mounted on their vehicles.
With these adjustments, this system can be a considered a
viable approach for ICT4D projects that need to exchange
data across devices under rural conditions.

Finally, there are still some known bugs within the system.
The list below details these issues.

• Queries seem to execute more than once. Each time
a query is executed, a line of text is written to a log
file. We noticed that sometimes multiples lines were
written during what should have been a single pass-by.
Each query’s output is however always written to the
same file name, so every time the query executes, any
pre-existing file with the same file name will be over-
written. The script that executes the queries is likely
triggered multiple times. It should trigger only once
when a connection between two devices is established,
however, it seems to occur multiple times. This bug
does not render the system unusable, but we did notice
that this occurs.

• Two pass-bys failed during the experiments. Once in
the pilot experiment, and once in the full experiment.
The failed pass-by in the pilot experiment resulted in
an empty output file being created. This likely means
that the connection was lost after about 18 seconds,
possibly due to the the portable device moving out-
side of the range of the stationary device. The other
failed pass-by, however, yielded no output file at all.
This means that for some unknown reason the two de-
vices did not manage to establish a connection at all.
This could be a severe bug, however more information
regarding the cause of this is needed.

7. CONCLUSION
The research presented in this paper shows that pass-by
M2M communication is a viable approach in extending knowl-
edge sharing systems. Looking at the communication method
as part of the larger Kasadaka platform, having the ability
to exchange data between Kasadakas opens up new possi-
bilities and use cases. Both existing applications as well as
new applications for future use cases of the Kasadaka plat-
form can adopt the ability to share semantic data among
devices. Aggregating and analyzing data originating from
geographically spread origins is also a real possibility.

Finally, we can conclude that M2M communication can be
of great use in ICT4D projects, especially those designed to
focus on local knowledge sharing. Our approach, which cre-
ates a sneakernet using local Wifi networks, is simple, yet
effective and uses low-cost hardware and open source soft-
ware to enable M2M communication between Wifi-enabled
devices. We have shown that this approach works in an
urban setting. Provided that devices that need to commu-
nicate with each other have a steady power supply when in
range of each other, there is no reason this approach would
not work under rural conditions as well. It should not be too
complex or expensive to implement similar sneakernet-type
M2M communication methods in other ICT4D projects, as
long as the devices that need to communicate with each
other have Wifi capabilities.

References
Baart, A. (2016). Creating a flexible voice service framework

for low-resource hardware: extending the kasadaka.
Cha, I., Shah, Y., Schmidt, A. U., Leicher, A., & Meyerstein,

M. V. (2009). Trust in m2m communication. IEEE
Vehicular Technology Magazine, 4 (3).

Charlaganov, M., Cudré-Mauroux, P., Dinu, C., Guéret, C.,
Grund, M., & Macicas, T. (2013). The entity registry
system: Implementing 5-star linked data without the
web. arXiv preprint arXiv:1308.3357 .

de Boer, V., Bon, A., WaiShiang, C., & Gyan,
N. B. (2016). Proceedings of the 4th workshop
on downscaling the semantic web (downscale2016).
figshare. Retrieved from https://dx.doi.org/10

.6084/m9.figshare.3827052.v1 (Retrieved: Jan 28,
2017)

de Boer, V., De Leenheer, P., Bon, A., Gyan, N. B., van
Aart, C., Guéret, C., . . . Akkermans, H. (2012). Ra-
diomarché: distributed voice-and web-interfaced mar-
ket information systems under rural conditions. In
International conference on advanced information sys-
tems engineering (pp. 518–532).

de Boer, V., Gyan, N. B., Bon, A., Tuyp, W., van Aart,
C., & Akkermans, H. (2015). A dialogue with linked
data: Voice-based access to market data in the sahel.
Semantic Web, 6 (1), 23–33.

Gray, J., Chong, W., Barclay, T., Szalay, A., & Vandenberg,
J. (2002). Terascale sneakernet: Using inexpensive
disks for backup, archiving, and data exchange. arXiv
preprint cs/0208011 .

Guéret, C., Schlobach, S., De Boer, V., Bon, A., & Akker-
mans, H. (2011). Is data sharing the privilege of a
few? bringing linked data to those without the web.
Proceedings of ISWC2011-” Outrageous ideas” track,
Best paper award , 1–4.

Hasson, A. A. (2010). The last inch of the last mile challenge.
In Proceedings of the 5th acm workshop on challenged
networks (pp. 1–4).

Hasson, A. A., Fletcher, R., & Pentland, A. (2003). Daknet:
A road to universal broadband connectivity. In Wire-
less internet un ict conference case study (pp. 1–9).

Heeks, R. (2008). Ict4d 2.0: The next phase of applying ict
for international development. Computer , 41 (6).

Lô, G. (2016). The power of knowledge sharing: innovative
icts for the rural poor in the sahel.

Lô, G., & Blankendaal, R. (2016). Digivet: a knowl-
edgebased veterinary system for rural farmers in
northghana.

Pentland, A., Fletcher, R., & Hasson, A. (2004). Daknet:
Rethinking connectivity in developing nations. Com-
puter , 37 (1), 78–83.

Valkering, O., de Boer, V., Lô, G., Blankendaal, R., &
Schlobach, S. (2016). The semantic web in an
sms. In Knowledge engineering and knowledge man-
agement: 20th international conference, ekaw 2016,
bologna, italy, november 19-23, 2016, proceedings 20
(pp. 697–712).

APPENDIX
A. PASS-BY EXPERIMENT RAW DATA

Table 4: Results from pass-bys on foot
of triples Success/failure Request time Size in bytes
30 success 0.531 sec 1960
30 success 1.048 sec 1960
322 success 0.184 sec 16718
322 success 2.219 sec 16718

Table 5: Results from pass-bys on bike
of triples Success/failure Request time Size in bytes
30 success 0.663 sec 16718
30 success 0.538 sec 16718
30 success 0.736 sec 16718
322 success 0.591 sec 16718
322 failure - -
322 success 0.449 sec 16718

B. SCALING EXPERIMENT RAW DATA

Table 6: Category 1: transferring 30 triples
Time in seconds Size in bytes
0.458 1960
0.500 1960
0.098 1960
0.401 1960
0.254 1960

Table 7: Category 2: transferring 300 triples
Time in seconds Size in bytes
0.319 15596
0.299 15596
0.293 15596
0.281 15596
0.099 15596

Table 8: Category 3: transferring 1k triples
Time in seconds Size in bytes
0.512 120947
0.528 120947
0.488 120947
0.476 120947
0.683 120947

Table 9: Category 4: transferring 5k triples
Time in seconds Size in bytes
1.599 728446
1.572 728446
2.027 728446
1.876 728446
1.858 728446

Table 10: Category 5: transferring 10k triples
Time in seconds Size in bytes
3.004 1489426
3.310 1489426
2.955 1489426
3.332 1489426
3.178 1489426

Table 11: Category 6: transferring 50k triples
Time in seconds Size in bytes
14.708 7644038
14.151 7644038
14.145 7644038
14.381 7644038
14.286 7644038

Table 12: Category 7: transferring 100k triples
Time in seconds Size in bytes
30.121 15393807
31.266 15393807
28.374 15393807
28.767 15393807
28.591 15393807

