
General purpose methodology and tooling for
Text-to-Speech support in voice services for

under-resourced languages

Justyna Klęczar
Vrije Universiteit Amsterdam

De Boelelaan 1105
1081 HV Amsterdam

The Netherlands
Student No. 2602204

jkleczar@gmail.com

ABSTRACT
In Africa, mobile telephony has become widespread in re-
cent years. This trend has induced growth in development
of mobile applications and services. However, due to low lit-
eracy levels as well as a huge linguistic diversity across the
continent, it proves challenging to create accessible applica-
tions for a wide range of African communities. Implementing
voice-based services is one possible way to bypass the prob-
lem of illiteracy, but not linguistic diversity. In this paper
the Text-to-Speech Slot and Filler system, originally devel-
oped as part of the Lwazi II project, is presented. The sys-
tem is aimed at under-resourced languages and supports a
limited dictionary of words. Thanks to its relative simplicity
of use, it allows for rapid development and creating support
for new languages by non-experts. The Text-to-Speech Slot
and Filler system has the potential to help existing mobile
services overcome the linguistic diversity in Africa. To show
this, the system was used to create TTS support for a new
language, Twi, spoken in Ghana. With the help of a na-
tive speaker, a number of suitable recordings was created in
the domain of weather forecast and then used to build the
system. To test the quality of the TTS conversion, several
new sentences in the language of Twi were synthesised and
evaluated by a group of native speakers in a feedback form.
Most of the syntheses were deemed easy to understand and
sounded mostly natural. In some cases, a word was mis-
pronounced due to incorrect unit selection, indicating that
this part of the system may need to be revised. Finally,
the system was integrated into an existing voice-based ser-
vice called InfoMétéo, extending it by the language of Twi.
Based on this use case, a general purpose methodology and
tooling of limited domain TTS support for under-resourced
languages is provided.

Keywords
TTS, Text-to-Speech, Slot and Filler, unit selection, illiter-
acy, voice-based services, language, linguistic diversity, ac-
cessibility, Africa

1. INTRODUCTION
In Africa, mobile telephony has become widespread in re-

cent years. For the majority of the African community, the
mobile phone is first and primary means of communication

[7]. According to the GSMA study conducted in 2016, it
was found that over half a billion people across the conti-
nent have been subscribed to mobile services [6]. The fore-
cast number of subscriptions is estimated to increase to 725
million by 2020.

This development opens up many opportunities to im-
prove African economy and information sharing. However,
due to the low literacy levels among the African community,
many of the regular services provided by mobile phones turn
out to be inaccessible. In Sub-Saharan Africa, around 182
million adults and 48 million youths (aged 15-24) are illiter-
ate [19]. On top of this, there is a huge diversity of languages
across the continent, summing up to over 1500 in total [4].
For these two reasons, illiteracy and linguistic diversity, it
proves challenging to create useful and accessible applica-
tions for such a wide range of communities.

Implementing voice-based services is one possible way to
bypass the problem of illiteracy. This approach has been
undertaken by researchers working at The Network Insti-
tute at Vrije Universiteit in Amsterdam. The Radio Marché
system they developed is a great example of how a voice in-
terface can make the application accessible to local farmers
[14]. Its main purpose was to provide market information
to users through a radio broadcast service. The market in-
formation is input by the farmers, who can advertise their
produce by making a phone call to the system. The infor-
mation is stored on the Web, after which it is shared on local
community radios in different languages.

One especially interesting feature of Radio Marché is the
TTS (Text-to-Speech) system, which allows for automatic
creation of audio files from text input. It was developed
by using the Slot and Filler method [14], which is based on
mapping plain text to audio files and representing them as
attribute-value pairs. The system has only been deployed
once, providing support for the languages of Bambara and
Bomu. The great advantage of the Slot and Filler TTS sys-
tem is its suitability for many different languages, includ-
ing those that are under-resourced. New languages can be
added to the system with the help of a native speaker. It
is important to note that this system is designed for a lim-
ited number of words, making it suitable for applications
that focus on a very specific domain (for example: market
information). Radio Marché uses this TTS system to auto-
matically generate the radio readings from the input market
information, and by doing so does not rely on actual human

broadcasters for the various languages.
There are many other examples of useful voice services

in Africa that could benefit from the TTS technology. Re-
using it in such services could potentially help with solving
the challenge of linguistic diversity in building mobile appli-
cations for African communities. The Slot and Filler system,
though often overlooked in the mainstream state of the art,
is definitely of interest in the field of ICT4D due to its sim-
plicity to set up and use by non-expert users. It does not
require any background in the field of linguistics, nor expert
programming knowledge. With detailed documentation, it
can be handled by a student with basic programming and
command line skills. Another advantage of the TTS Slot and
Filler system is that it is computationally inexpensive, mak-
ing it an attractive candidate for Text-to-Speech conversion
in ICT4D.

This paper will provide a general purpose methodology
and tooling of the Slot and Filler TTS method, including a
detailed guide of how the system can be built and used. This
will be done for the language of Twi, based on an example
use case of meteorological readings.

2. RELATED WORK

2.1 Accessibility in African Context
Accessibility of mobile applications in Africa has a some-

what different meaning than in the rest of the world. W3C
describes ”accessibility” as ”making websites and applica-
tions more accessible to people with disabilities when they
are using mobile phones and other devices” [5]. This mean-
ing of the term is based on a Western perspective. In Africa,
accessibility is affected by a number of factors taken for
granted in W3C’s description, including access to electric-
ity, technology and the Internet, and last, but not least, a
certain standard of literacy.

If we look at the technology, it is apparent that Africa
is behind on the Western world. The majority of Africans
use outdated mobile phones, which is an important factor
that needs to be taken into consideration when creating ap-
plications for the African communities. One of the obvious
solutions to this problem is the use of SMS for a broad range
of services, as it is supported by all mobile phones. How-
ever, SMS is problematic in the sense that it does not cover
the desired range of users, because of its heavy dependence
on literacy [14]. To avoid the problem of language, symbols
could be used as a more direct and universal communication
tool instead. However, here too problems arise, as symbols
do not always convey the intended meaning. For example,
an arrow pointing to the left in some communities may be
interpreted as ”go back”, while in others it means ”go for-
ward”, depending on the local convention. The next step in
tackling the problem of an accessible and usable application,
is the use of voice. Voice based services bypass the problems
of illiteracy and interpretation of signs all together, and al-
low for a direct and clear way of communicating over the
phone. They are also suitable for any type of mobile phone
device and do not require an Internet connection, making
them the perfect candidate for building user-friendly and
accessible mobile applications in Africa.

2.2 Voice Based Services
Given the high illiteracy levels in Africa, an alternative

interface is needed to ensure accessibility of applications.

Voice based services are a very promising option, especially
since they are already familiar to the people. They have been
used as solutions in several projects carried out in Ghana and
Mali. This section gives a brief overview of these projects.

2.2.1 Radio Marché
Radio Marché is a voice-based service targeted at the

farmers community. It is used to broadcast various pro-
duces offered by farmers on the local radio [14]. The market
offerings information is first made available on the Web and
then shared by local community radios, thus making this
data accessible to individuals without Internet access.

The Radio Marché project was executed in Mali and its
aim was to improve an already existing Market Information
System (MIS), which was mostly based on sharing infor-
mation via SMS and storing it in an Excel file. For many,
the use of SMS was not an accessible option for sharing in-
formation. Radio Marche’s new system allowed for manual
processing of the information from both voice and text mes-
sages, thus supporting many more users with low literacy
levels. The information collected is used for creating the
market communiqués in a web interface especially made for
that purpose. The audio communiqués are generated au-
tomatically by a TTS (Text-to-Speech) system, which was
created solely for under-resourced languages by using the
Slot and Filler method (see Section 3). The languages used
in this project were Bambara and Bomu.

2.2.2 Marketing for Agricultural Products
The voice-based system for marketing of agricultural prod-

ucts was developed in Ghana by Dittoh et al. [13]. It was
designed to be accessed through a phone call from a local
number, which would be answered by an Interactive Voice
Response (IVR). Support for integration of new languages
was provided. In addition to the mobile voice interface, a
Web interface was also created.

The work flow of the system is as follows: in order to add
his products for sale to the system, a farmer makes a phone
call to a local phone number, which is answered by the Voice
Server. Once the farmer has provided the input, he is asked
for confirmation. As soon as it is given, the system transfers
the obtained data to a database, which is in turn used by a
web interface providing all listings to potential buyers with
Internet access.

Radio Marché and Marketing for Agricultural Products
are projects that make great use of voice technologies to
improve information sharing in different regions in Africa,
while remaining accessible to illiterate users. Market in-
formation in Radio Marché is stored in a structured way
(a spreadsheet) and covers a very specific domain, making
this service suitable for the TTS Slot and Filler technology.
The majority of other voice-based systems share the same
unique properties: structured information and restricted vo-
cabulary. Thus in principle, the TTS system used in Radio
Marché could be relevant to them as well. In order to make
the TTS Slot and Filler technology accessible to new ser-
vices, a methodology and required tooling will be described
in this paper.

2.3 Text-to-Speech
In a nutshell, TTS synthesis is ”the technology that con-

verts an input text into a speech signal” [8]. This section
focuses on existing solutions in the field of Text-to-Speech

systems and their suitability in the context of this project.
It then goes on further to explore the state of the art in
TTS, describing and evaluating the relevance of various ap-
proaches.

2.3.1 Existing TTS Systems
This section covers two very different Text-to-Speech sys-

tems: Mary TTS and Slot and Filler TTS. Both of them are
evaluated on the basis of their suitability as TTS support
for under-resourced languages in voice-based services. The
factors taken into account include not only the possibility of
creating such support, but also ease of use and requirement
for computational power of these systems.

MARY TTS

One of the most well-known Text-to-Speech systems used
by researchers is the German MARY (Modular Architec-
ture for Research on speech sYnthesis) [17]. It is an open-
source, multilingual Text-to-Speech Synthesis platform writ-
ten in Java and supports ten languages: German, British
and American English, French, Italian, Luxembourgish, Rus-
sian, Swedish, Telugu and Turkish. The platform features
several toolkits that can be used to add support for new
languages as well as to build unit selection and HMM-based
synthesis voices.

The toolkit for adding support for a new language contains
an extensive number of modules, including:

• Preprocessing and text normalisation - these mod-
ules involve word tokenisation, processing abbrevia-
tions and numbers.

• Natural language processing - this module is re-
sponsible for linguistic analysis and annotation. The
text is chunked, grapheme to phoneme1 conversion is
performed, intonation rules are defined.

• Calculation of acoustic parameters - this mod-
ule translates the linguistic symbols into an acoustic
parameter file, specifying parameters such as sound
duration for each phoneme2.

• Speech synthesis - this module transforms the pre-
viously created acoustic parameter file into an audio
file.

By following a number of steps described in the MARY
documentation [2], it seems feasible for a person with techni-
cal background to create support for a new language. Unfor-
tunately however, the system does not seem to be well suited
for under-resourced languages. In one of the first steps, the
toolkit requires large amounts of textual data coming from
Wikipedia for processing. This requirement makes the sys-
tem impossible to use for the minority African languages, as
they simply do not exist on Wikipedia.

As mentioned earlier, MARY also allows for creation of
voices by using either the unit selection or the HMM-based
approach. The toolkit itself has been described in detail by
Pammi et al. [15] and expanded to make it more accessi-
ble to regular users, by creating a Graphical User Interface
(GUI) for most of the common tasks. Unfortunately again,

1Grapheme to phoneme - letter to sound.
2Phoneme - the smallest contrastive unit in the sound sys-
tem of a language.

new voices can only be created for the languages already
supported by MARY.

Despite the fact that MARY is a very robust and success-
ful TTS synthesis system, it can only be applied to major
languages that are present on the Web. It is therefore not
a suitable technology that could be used in voice-based ser-
vices such aimed at African communities as Radio Marché.
Additionally, since it is a system supporting an entire lan-
guage and was developed with the level of Western technol-
ogy in mind, it may turn out to be too expensive in terms
of computational power to use in the African context.

Slot and Filler TTS

The Slot and Filler TTS system is very different to MARY,
both in terms of its popularity and intended use. It ori-
gins from the Lwazi II project carried out by Calteaux et
al., which focused on creating full TTS systems for South
African languages [11]. The system was later modified by
Daniel van Niekerk (who also worked on Lwazi II) during
the VOICES (VOice-based Community-cEntric mobile Ser-
vices) project [9] to support the creation of Slot and Filler
systems. VOICES is funded by the European Union and, as
one of its objectives, it aims to ”improve voice-based access
to content and mobile ICT services through the development
of a free and open source toolbox for local developers” [1].

The TTS Slot and Filler system was built with under-
resourced languages in mind. Its purpose is to provide TTS
synthesis for a limited dictionary of words in a specific do-
main, which can then be used in a variety of other applica-
tions, such as voice-based services. The system is ”consid-
erably simpler to develop than full-fledged subword-based
systems” [9], allowing for rapid development and creating
support for new languages. It is written in Python and Bash.
It uses in-house developed TTS tools to perform the steps of
text processing and speech segmentation. The whole system
is based on the unit selection approach, described in more
detail in the following section: State of the Art in TTS.

Although the TTS Slot and Filler system has not been
in use for several years (the last update of the source code
dates back to June 2013), it seems like the most suitable
tool available for the development of TTS support for under-
resourced languages in voice-based services.

2.3.2 State of the Art in TTS
State of the art in Text-to-Speech (TTS) synthesis has

been well outlined by Barnard et al. in VOICES Report on
state of the art and development methodology [8]. In a tra-
ditional TTS synthesis system, there are two main building
blocks:

• Linguistic processing block - this process is respon-
sible for extracting information from the text. The in-
formation is then represented in a symbolic sequence
of phonemes, including linguistic information of the
speech, such as its melody, rhythm and intensity.

• Acoustic processing block - this process is respon-
sible for generating a speech signal based on the sym-
bolic sequence produced by the Linguistic processing
block.

In order to perform both of these processes, different ap-
proaches can be used. Some of these approaches are outlined
in the sections below.

Linguistic Processing

Linguistic processing focuses on analysing the text. In ev-
eryday life, regular writing contains many ambiguities, such
as abbreviations, as well as various symbols that need to be
interpreted, such as punctuation marks. A TTS synthesis
system must deal with such cases with the use of grammat-
ical analysis, which ensures that each utterance obtains the
correct pronunciation and intonation. This analysis process
typically includes a number of steps, as described by Schn-
abel et al. [16].

In the preprocessing step, text normalisation is performed.
In this stage various symbols, including numerical expres-
sions, abbreviations and special characters, are converted
into their orthographic form. Next, pronunciation of the
text is determined. This is done by converting text into
a sequence of phonemes with use of different technologies,
including grapheme-to-phoneme rules, morphological analy-
sis and pronunciation lexicons. The morphological analysis
is responsible for carrying out the segmentation of words
and defining stress positioning, making sure that the spoken
words are accentuated correctly.

In the last stage of linguistic processing, contextual mod-
ification of pronunciation is performed. This process makes
sure that differences of intonation are taken into account in
various cases, for example a word spoken on its own versus
a word inside a sentence.

Acoustic Processing

In acoustic processing, different approaches can be used for
speech synthesis. The most efficient one mentioned by Barnard
et al. is the HMM-Based Synthesis, based on Hidden Markov
Chains. At the moment, this method is considered ”the stan-
dard approach” [8]. In his book ”Text-to-speech Synthesis”,
Paul Taylor describes the HMM approach in detail. Origi-
nally, HMM models were developed for speech recognition,
however since then, they have also been used for many other
tasks in the field of speech and language. HMM is a sta-
tistical, machine learning method which, in the context of
speech synthesis, allows the system to ”attempt to learn the
general properties of the data” [18], rather than memorise
the data itself as in the concatenative approach. There are
two advantages to using HMM - firstly, in large applications,
much less memory is required to store data parameters of the
model than to store the entire data. Secondly, the model is
flexible in the sense that it can be modified in various ways,
for example converting the original voice to a different one.

Another popular approach used in speech synthesis is unit
selection. It derives from a second generation system used in
the 1990s, called the concatenative diphone approach [18].
The reason why the concatenative diphone system was ex-
tended, was that it was too simplistic and did not account for
variations in diphones3 correctly. The unit selection method
uses a richer variety of speech, therefore it is able to capture
more variation in phones and make the final speech synthesis
sound more natural. The idea behind this approach is that
each linguistic type consists of a number of units, which vary
between each other. Then, ”during synthesis, an algorithm
selects one unit from the possible choices, in an attempt to
find the best overall sequence of units which matches the
specification” [18]. A ”unit” can be a phone, syllable or a

3Diphone - an adjacent pair of phones. It is usually used to
refer to a recording of the transition between two phones.

word, depending on computational resources, the intended
size of the dictionary and the desired final effect of the syn-
thesis. In the case of the TTS Slot and Filler system, a
unit represents a single word, since its main purpose is to
provide TTS support for voice-based services with a very
specific domain.

The unit selection approach is the appropriate choice when
developing a TTS synthesis system for a very specific do-
main. It is much simpler to implement than the HMM ap-
proach and therefore allows for rapid development, including
adding support for other languages. Its second advantage is
that, due to a relatively small database of words, it is com-
putationally inexpensive to run.

2.3.3 VOICES Recommendation
While the HMM model is advantageous in terms of mem-

ory, it is only robust in the case creating TTS support for
an entire language, rather than a small subset of it. When
working with a limited dictionary focusing on a very specific
domain, this advantage is lost, while the complexity of the
approach remains. On the other hand, the unit selection ap-
proach is simple to implement and therefore allows for rapid
development and providing support for new languages with
a limited dictionary quickly. The recommendation in the
VOICES research is to use the unit selection speech synthe-
sis when developing a TTS system for under-resourced lan-
guages. Following the recommendation, the TTS Slot and
Filler system was developed by Daniel van Niekerk, which
was incorporated into the Radio Marché project.

Having reviewed the existing TTS systems and state of
the art approaches, it is clear that the TTS Slot and Filler
method is the most suitable one in the context of this project.
The rest of this paper focuses on a detailed description of
this system, how it can be used and incorporated into an
existing voice-based service. The system is then evaluated
with respect to the quality of speech synthesis produced, as
well as its ease of use. Based on the evaluation, recommen-
dations are made on how the system can be improved in the
future.

3. SYSTEM DESCRIPTION
This section describes the architecture and work flow of

the Slot and Filler TTS System.

3.1 Slot and Filler Structure
The Slot and Filler is a well-known structure in the field

of Artificial Intelligence. It was used as the primary design
framework in the development of the TTS Slot and Filler
system described in this paper. In this structure, a slot
is an attribute value pair in its simplest form. It is often
referred to as a frame, which is supposed to hold values. A
filler is a value that a slot can take. It can be any value: a
string, numeric, a pointer and other.

In the case of the TTS Slot and Filer system, the filler of
the attribute slot is the string ”example”. Then, the filler
of the value slot would be the corresponding audio file ”ex-
ample.wav”. Figure 1 illustrates the usage of Slot and Filler
structure in the TTS system.

3.2 System Design
The Slot and Filler TTS system designed and built by

Daniel van Niekerk was implemented by using the unit se-
lection approach with each unit representing a word, which

Figure 1: Slot and Filler Structure

was described in Section 2.3.2. This approach relies on creat-
ing a set of recordings for a given domain, which can then be
used to select and join a subset of these recordings, in order
to create a new sentence. The Slot and Filler TTS System
was built by customizing already existing open-source TTS
software, including normalize-audio (tool for adjusting the
volume of audio to a standard level), Praat (used for speech
analysis and synthesis), HTK (toolkit for building and ma-
nipulating Hidden Markov Models) and Edinburgh Speech
Tools (a collection of functions for manipulating objects used
in speech processing). Additionally, text-processing modules
were developed for the languages of Bambara and Bomu, in-
cluding basic phoneme sets, letter to sound rules and text
normalisation routines [10].

Figure 2: TTS Synthesis Process

The work flow of building the system for a new language

is as follows: first, a voice definition is created, based on the
pronunciation resources manually defined for the language of
choice. These pronunciation resources include phoneme sets
and letter to sound rules. Next, the pre-recorded audio files
are setup for alignment. In this step, the recordings are pro-
cessed by performing downsampling (reducing the sampling
rate of a signal in order to reduce its size) and energy nor-
malisation on them. Finally, the phones of the language are
aligned. Text grid files and utterances are created, followed
by feature extraction for the database. Once everything is
in the database, the TTS has been created and is ready for
testing.

Having the system setup, text to speech synthesis can be
performed. As shown in Figure 2 [9], the application takes
plain text as input, for example a sentence. The text is pro-
cessed and divided into several units (words). Then, as each
unit is selected, a corresponding audio file is chosen from
the acoustic inventory. The audio files are then concate-
nated together, thus forming the original sentence in audio
form. The output of the system is an audio file.

4. METHODOLOGY AND TOOLING
In this section, a general methodology and tooling for the

Slot and Filler TTS system is provided. For a detailed user
guide describing installation of dependencies, building the
system for the first time and adding support for new lan-
guages, please refer to Appendix A.

4.1 System Requirements
The system runs only on case-sensitive operating systems,

thus Linux is the preferred OS. MacOS may also be suitable,
but only if the case-sensitive version was installed (the cur-
rent default is case-insensitive). In this project, the system
was built and tested on 64-bit Ubuntu 16.04.2 LTS.

4.2 Dependencies
The following dependencies are used in the TTS Slot and

Filler system for building a new voice:

• Python 2.7 or higher

• Numpy

• Scipy

• SoX

• Normalize-audio

• Praat

• HTK 3.4.1

• Edinburgh Speech
Tools 2.4

For details on the installation of these dependencies, please
refer to Appendix A.2.

It should be noted, that these dependencies are only re-
quired for voice building, rather than the running of the
system. The run time system (i.e. the system running the
text-to-speech synthesis once the voice file has been created)
relies only on the top three dependencies in the above list.

4.3 TTS System Build and Language Support
The TTS Slot and Filler system build requires basic knowl-

edge of the command line in Linux based systems and basic
debugging skills. A step-by-step guide for building the sys-
tem for the first time is provided in Appendix A.3. The
language used in the default build is Bambara, spoken in
Mali.

To provide new language support, a native speaker of that
language and a specific use case in a narrow domain are
required. New language support can be created in tree steps:

• Step 1. A list of phones of the new language must
be obtained from an external source or from a native
speaker. This list is then split into vowels and con-
sonants. It should be understood how each phone is
supposed to be articulated, including the manner as
well as place of articulation. This information is rep-
resented as a set of values, which is then used to create
the voice definition of the language during the build of
the new system.

• Step 2. Given a use case in a narrow domain, an
example script should be created, containing a set of
sentences covering the use case as much as possible.
Where content will vary, e.g. slots for changing days
of the week, numbers or weather conditions, all vari-
ations should also be included. These should be in-
cluded in sentences of the script for recording in order
to make sure that the prosodic features of utterances
are preserved. Then, the sentences as well as ”filler”
words (such as days of the week or numbers) are to be
recorded by one person. Doing the recordings in one
session is very beneficial for the overall quality of the
final speech output.

• Step 3. Once the recordings have been made, an ac-
companying text file must be created, including at-
tribute value pairs containing the names of the audio
files mapping onto the text representation of the con-
tent in that audio file.

One might ask why letter-to-sound and phone informa-
tion is needed to build a Slot and Filler system based on
word units. The answer is evident from the way the system
has been developed - as mentioned in Section 2.3.1 under
Slot and Filler TTS, the system originated from the Lwazi
II project, where a full, diphone-based TTS system was cre-
ated. The letter-to-sound and phone information were used
for automatic phone alignment, which allowed for building
the system from recordings automatically. The TTS Slot
and Filler system works almost in the same way, with only
one difference - the units are represented by words rather
than by diphones.

Once the three steps described above have been com-
pleted, the system can be re-built and used for the new
language. For a more detailed guide of new language sup-
port, please refer to Appendix A.4, where support for the
language of Twi, spoken in Ghana, is implemented.

5. CASE STUDY: INFOMÉTÉO
In the Vrije Universiteit course called ICT4D, students

learn how to develop applications for under-resourced coun-
tries in Africa. In many cases, the applications that are
built by the students are voice-based services. In combina-
tion with the TTS Slot and Filler System, the ICT4D course
presented a good opportunity for collaboration.

At the beginning of the ICT4D course, the Slot and Filler
TTS System was presented to the students, offering it as a
potential tool for their projects. A group of students work-
ing on a case study of meteorological rainfall readings was
interested in the system and decided to build a voice-based

application called InfoMétéo [12]. InfoMétéo is intended as a
tool for farmers, allowing them to access information about
the weather for the upcoming days. This service is impor-
tant and potentially life-changing for local farmers in Africa,
because rainfall has become more erratic and less predictable
over the past few years. More than 90% of the active pop-
ulation in West Africa is involved in agricultural activities,
making agriculture the most important source of income in
the region [3].

The way the InfoMétéo system works, is as follows: the
farmer calls a local number and gets a voice menu, where he
can pick a language of choice, followed by a choice of region.
He will then receive the weather forecast, the precipitation
level, wind speed and wind direction for this region, in the
chosen language. The system supports 13 administrative
regions in Burkina Faso and the languages of English and
French. For a more detailed view of the service control of
the InfoMétéo system, please refer to Figure 3.

Figure 3: Service Control Flow of InfoMétéo

To extend the InfoMétéo system and prove that it is pos-
sible to provide local language support, the TTS Slot and
Filler System was used to incorporate a new language, Twi,
spoken in Ghana. The Twi language was chosen by the
availability of a native speaker, who agreed to create suit-
able recordings in the domain of weather forecast. A meeting
was arranged between the InfoMétéo team a mediator who
was in contact with the Twi speaker in Ghana. A script with
words and possible sentences was agreed upon and a total
of 53 recordings were made, consisting of 16 sentences and
37 filler words (see Appendix B). They included sentences
describing weather conditions and voice commands allowing
a choice of language or location, as well as extra record-
ings for variable content such as days of the week, numbers
and words describing weather. All recordings were processed
by audio software Audacity in order to remove background
noise.

Once the recordings were ready for use, the TTS Slot and
Filler System was built on the server of the InfoMétéo team.
It was integrated into the InfoMétéo application, taking text
as an input and creating an audio .wav file as output. Ac-
cording to the InfoMétéo team, once the system was in place
on the server, it was straightforward to use and integrate.

However, the installation itself proved to be difficult without
the help of the system expert. That is why it was decided
to create a detailed documentation of the setup, which has
been included in Appendix A.

6. RESULTS
In order to measure the quality of speech synthesis of the

TTS Slot and Filler system, eight new sentences in the lan-
guage of Twi were synthesised and six native Twi speakers
were asked for feedback on understandability and natural-
ness of the sentences. The eight sentences to be created were
supplied in text form by the same native speaker, who cre-
ated the 53 recordings for the build of the system. They can
be viewed in Appendix C.

The native speakers were asked to fill out a feedback form
asking three questions about each of the speech syntheses:

1. The first question asked to indicate how easy the speech
synthesis is to understand by the native speaker, by
rating them from 1 to 5. The numbers represent the
following measures: 1 - not possible to understand, 2
- difficult to understand, 3 - acceptable, 4 - easy to
understand and 5 - very easy to understand.

2. The second question asked to indicate how natural the
speech synthesis sounds to the native speaker, by rat-
ing them from 1 to 5. The numbers represent the fol-
lowing measures: 1 - very unnatural, 2 - mostly un-
natural, 3 - partly natural and partly unnatural, 4 -
mostly natural and 5 - human-like natural.

3. The third question asked to write an explanation for
the choices made in the first two questions, including
giving examples of words or parts of the sentence that
are not easy to understand or do not sound unnatural.

After the feedback forms have been filled out, they were
collected and analysed. The average scores for the first two
questions were calculated for each recording (see Table 1).
In general, the response was positive.

Table 1: Average score of created syntheses
How easy to
understand?

How natural?

Synthesis 1 4.00 4.00
Synthesis 2 3.33 3.00
Synthesis 3 4 4.00
Synthesis 4 3.5 4.00
Synthesis 5 3.83 4.00
Synthesis 6 3.67 4.00
Synthesis 7 3.17 3.00
Synthesis 8 3.17 3.00

The scores for Question 1 (How easy to understand is the
synthesis?) were all above 3 (”acceptable”) with most of
them being 3.5 and above, indicating that they were ”easy
to understand”. Syntheses 1, 5 and 6 received the highest
average scores, while syntheses 2, 7 and 8 received the lowest
average scores.

The responses to Question 2 (How natural is the synthe-
sis?) turned out to be very similar to the ones for Question
1, which was to be expected. An interesting observation is

that all respondents agreed on the exact same score for each
synthesis, making all averages either 3 (partly unnatural,
partly natural) or 4 (mostly natural). Again, syntheses 2, 7
and 8 received the lowest scores.

Extra feedback was given for the syntheses with lower
scores. For Synthesis 2, it is clear that the word ”Nnε” at
the end of the sentence is causing the problem. This is due
to the fact, that a separate recording for this word was made
with a very strong emphasis on ε. The system used this unit
for the sentence synthesis, rather than one coming from a
full sentence containing the word ”Nnε”, which would have
sounded more natural. This could be fixed by improving
the unit selection process. For example, when creating a
synthesis with a word such as ”Nnε” inside a sentence as in
Synthesis 2, the unit coming from another sentence should
be preferred over a unit, which was recorded on its own.

Syntheses 7 and 8 received the lowest scores. In synthe-
sis 7, the word ”na” is pronounced incorrectly. According
to the respondents, it should be accentuated downwards,
rather than upwards. This makes a very big difference, as
the accent determines the meaning of the word, one mean-
ing ”because” and the other ”and”. It is not easy to deter-
mine this difference from the context of a sentence, there-
fore correct unit selection is difficult in this case. To fix
this problem, the best thing to do would be to differentiate
the spelling of the two different words in the text, in order
to indicate the appropriate accent. Finally, in synthesis 8,
all respondents agreed that the word ”toaso” sounds incor-
rectly or even ”funny”. In the original recordings, only one
sentence contains this word. It turned out that it was not
recorded correctly and should be replaced by one or more
new recordings with the correct pronunciation and intona-
tion of the word ”toaso”.

7. EVALUATION
When compared to other existing TTS systems, the TTS

Slot and Filler system appeared to be the most suitable for
providing TTS support in voice-based services for under-
resourced languages. Despite the fact that this software has
not been in use for several years and the documentation
was rather scarce, a successful attempt was made to first
build the system with the default language of Bambara, and
later to create support for another African language - Twi,
spoken in Ghana. This process required a number of steps
and several problems were encountered along the way.

Initially, an unsuccessful attempt was made to build the
TTS Slot and Filler software on MacOS. After an investi-
gation, it turned out that it was not possible due to the
case-insensitive nature of the operating system. During one
of the steps in the system build, a file is created for each
phone of the language in a single directory. In some cases,
both upper case and lower case of the same letter are used
for the Bambara language in order to represent phones that
do not exist in our alphabet. To give an example, the phone
”ε” is represented by the letter ”E”. Since the Bambara lan-
guage also contains regular ”e”, the software crashes on an
attempt to create two separate files for ”e” and ”E”, as these
two are treated the same by MacOS.

Having learned that, another attempt was made to build
the TTS Slot and Filler system on a Linux operating system,
in this case Ubuntu. The problem of case sensitivity was
solved, but several other issues were encountered. Most of
the TTS Slot and Filler code is written in the programming

language Python. Since it is a rapidly evolving language,
several parts of the original code turned out to be deprecated
and were not supported anymore by the obsolete libraries
they relied on. These parts were updated to use new libraries
and the updated version of the software was made available
on Github. Lastly, a number of dependencies had to be
installed for the system to work, only some of which were
mentioned in the documentation.

Creating support for a new language proved much more
straightforward than building the TTS Slot and Filler sys-
tem for the first time. As mentioned in Section 4.3 TTS
System Build and Language Support, this can be done three
steps. Firstly, a list of phones is obtained and described
how it is articulated. Secondly, a set of recordings covering
a specific domain are made. Finally, a text file containing
the textual version of each recording is created. Once the
three steps have been completed, the system can be re-built
and tested.

The whole process of building the TTS Slot and Filler
system has been attempted four times in total and success-
fully completed three times (the one unsuccessful attempt
was with MacOS). Having done it repeatedly allowed for
creating a complete and detailed step-by-step documenta-
tion, which has been included in Appendix A. The fourth
and final attempt was done as part of the InfoMétéo project
described in Section 5: Case Study: InfoMétéo. The lan-
guage used was Twi - one of the major languages spoken in
Ghana.

The new build was successfully integrated with the In-
foMétéo voice-based application, extending the system by
the language of Twi in addition to the already supported
English and French. Upon completion of the project, the
InfoMétéo team was asked for feedback on the TTS Slot
and Filler System. When asked if they would have been
able to setup the system without the help of an expert for
the first time, they admitted that it would be difficult and
even ”almost impossible”. The original documentation was
too scarce not detailed enough to follow by a regular stu-
dent. That is why it was extended, accounting for installa-
tion of dependencies, adding some of the missing steps and
including a guide for new language support. The new docu-
mentation was shown to the team, asking if they think they
could set up the system again by themselves, with the help
of the document. This time the answer was very positive.
One of the team members - Alexandru - took the effort to
try and build the system by himself and managed to do
it successfully. He commented: ”following the installation
steps you provided proved to be very helpful”. However,
he also mentioned that there were ”two intricacies not de-
scribed in the steps”, to do with dependency installation
and path setting. After his feedback the documentation was
updated once again. Finally, some comments were given
about the integration of the TTS Slot and Filler system
into the InfoMétéo application. Since text to speech conver-
sion is based on calling only one Python file, the integration
turned out to be quite straightforward. The only difficulty
faced by the InfoMétéo team was referencing one file repre-
senting the corpus of words, which is required by the Python
script. This problem was solved by copying the troublesome
file into the InfoMétéo application directory.

8. CONCLUSIONS AND FUTURE WORK
To conclude, the TTS Slot and Filler proves to be the

most appropriate method for creating Text-to-Speech syn-
thesis for under-resourced languages. It is relatively simple
to use, as it can be handled by people with standard pro-
gramming skills and no background in linguistics is required.
Unlike other currently available TTS systems, does not rely
on large amounts of textual data in order to add a new lan-
guage. It is also computationally inexpensive, which is a
big advantage given the lack of technological resources in
Africa. An important thing to note, however, is that the
TTS Slot and Filler system is only suitable for applications
with a narrow domain, using no more than a few hundred
words. There are two reasons for this limitation. Firstly, the
system relies on manually creating a number of recordings
fully covering the intended dictionary, which can be time
consuming. Secondly, too large of a dictionary might slow
down the performance of the application considerably, due
to the approach the system is based on. This approach is
called unit selection.

Unit selection is based on on splitting all sentences avail-
able in the recordings into ”units”, in this case words. In
order to synthesise a new sentence, one unit from all possi-
ble choices is selected for each word in the sentence. These
units are then concatenated together into a single audio file.
The unit selection approach is fast and effective in TTS syn-
thesis with a relatively small dictionary, however using it for
thousands of words would prove to be too heavy computa-
tionally.

There are many cases in which the TTS Slot and Filler ap-
proach can be very useful, despite its limitation to a narrow
domain. The system has the potential to make informa-
tion more accessible to African communities, regardless of
their literacy levels or the language they speak. One possi-
ble way to do this is to provide multiple language support
in the already existing voice-based services. Such services
typically store information in a structured way (for exam-
ple in a spreadsheet in the case of Radio Marché) and focus
on one specific task, making them a perfect fit for the TTS
system.

As a proof of concept, the TTS Slot and Filler system was
integrated into an existing voice-based application called In-
foMétéo, which was built by a group of students as part of
the ICT4D course at Vrije Universiteit. InfoMétéo is in-
tended as a tool for farmers, allowing them to access infor-
mation about the weather for the upcoming days. Originally,
the system supported the languages of English and French.
The TTS Slot and Filler system was used in to extend it
by adding a new language, Twi, spoken in Ghana. The In-
foMétéo team was able to build and use the system without
any major issues with the help of the documentation of the
system, which was created as part of this project. Accord-
ing to them, any regular IT student with basic Linux skills
should be able to follow the documentation and use the TTS
Slot and Filler system. The integration itself also turned out
to be straightforward, as it only involved one call to a single
Python file.

In order to assess the quality of speech synthesis produced
by the system, a group of native Twi speakers was asked for
feedback on a set of eight syntheses. In general, the feedback
was positive, as five syntheses out of eight were deemed ”easy
to understand” and sounded ”mostly natural”. The remain-
ing three were commented as ”acceptable” and ”partly nat-
ural, partly unnatural”. The less positive feedback was due
to incorrect pronunciation of some words. In the first case,

the word was pronounced in an inappropriate way with re-
spect to its placement in the sentence, thus making it sound
unnatural. In the second case, the mistake was made by
the system in selecting the correct unit for synthesis due to
the same spelling of two words with different meanings and
pronunciations. In both of these cases, it may be possible
to improve the unit selection algorithm of the system by
adding additional rules to it, thus effectively improving the
understandability and naturalness of the syntheses.

Close to the conclusion of this project, Daniel van Niekerk
- the owner and maker of the TTS Slot and Filler system
- was asked for clarification of some aspects of the system.
After exchanging several e-mails, some interesting insights
were revealed. As mentioned throughout the paper, the sys-
tem relies on the unit selection approach. In the version used
for the default Bambara build, as well as for the Twi build,
the units represent whole words, thus making the system
suitable for a limited dictionary only. However, it turns out
that it is also possible to configure the system to use half-
phones instead, which would allow for more flexibility in the
system. According to Daniel van Niekerk though, building
a half-phone or diphone based system would require more
recordings, which can be difficult without a native speaker
available at hand. Another interesting insight is that a new
version of the TTS system is under development at the mo-
ment, including extra tools and improvements. Most of
them will be used to build HMM-based voices for South
African languages. This opens up a good opportunity for
future work. Once ready, the new system could be tested
and built for other applications to be used in Africa that
might require a broader domain.

9. REFERENCES
[1] About the voices project. VOICES

http://mvoices.eu/about.html. Accessed: 2017-06-10.

[2] Adding support for a new language to mary tts.
Github MaryTTS https://github.com/marytts/
marytts/wiki/New-Language-Support. Accessed:
2017-06-06.

[3] Groundswell International. Groundswell International
http://www.groundswellinternational.org/
burkina-faso/farmers-teach-farmers-in-burkina-faso/.
Accessed: 2017-06-04.

[4] How Many Languages of Africa Are There? Lebogang
Matshego
https://www.africa.com/many-african-languages.
Accessed: 2017-05-18.

[5] Mobile Accessibility. W3C
https://www.w3.org/WAI/mobile. Accessed:
2017-05-22.

[6] Number of unique mobile subscribers in Africa
surpasses half a billion. GSMA
http://www.gsma.com/newsroom/press-release/
number-of-unique-mobile-subscribers-in-africa-surpasses-half-a-billion-finds-new-gsma-study/.
Accessed: 2017-05-12.

[7] N. Amanquah and M. Mzyece. Mobile Application
Research and Development: The African Context. In
Proceedings of the 2Nd ACM Symposium on
Computing for Development, ACM DEV ’12, pages
20:1–20:1, New York, NY, USA, 2012. ACM.

[8] E. Barnard, P. Bagshaw, M. Froumentin, A. Botha,
and F. C. Pinto. Report on state of the art and

development methodology. VOIce-based
Community-cEntric mobile Services for social
development. Deliverable no d3.1. Seventh Framework
Programme, 2011.

[9] E. Barnard and F. C. Pinto. Proposal documents to
standards committees. VOIce-based
Community-cEntric mobile Services for social
development. Deliverable no d3.5. Seventh Framework
Programme, 2013.

[10] E. Barnard, D. van Niekerk, F. Pinto, and A. Bon.
Language packs for local languages. VOIce-based
Community-cEntric mobile Services for social
development. Deliverable no d3.2. Seventh Framework
Programme, 2012.

[11] K. Calteaux, F. De Wet, C. Moors, D. Van Niekerk,
B. McAlister, A. S. Grover, T. Reid, M. Davel,
E. Barnard, and C. Van Heerden. Lwazi ii final report:
Increasing the impact of speech technologies in south
africa. Technical report, CSIR, 2013.

[12] A. Custura. InfoMétéo: A System For Propagating
Rainfall Information In Developing Countries, 2017.

[13] F. Dittoh, C. van Aart, and V. de Boer. Voice-based
Marketing for Agricultural Products: A Case Study in
Rural Northern Ghana. In Proceedings of the Sixth
International Conference on Information and
Communications Technologies and Development:
Notes - Volume 2, ICTD ’13, pages 21–24, New York,
NY, USA, 2013. ACM.

[14] N. B. Gyan, V. de Boer, A. Bon, C. van Aart,
H. Akkermans, S. Boyera, M. Froumentin, A. Grewal,
and M. Allen. Voice-based Web Access in Rural
Africa. In Proceedings of the 5th Annual ACM Web
Science Conference, WebSci ’13, pages 122–131, New
York, NY, USA, 2013. ACM.

[15] S. C. Pammi, M. Charfuelan, and M. Schröder.
Multilingual Voice Creation Toolkit for the MARY
TTS Platform. In LREC 2010. ELRA, 5 2010.

[16] B. Schnabel and H. Roth. Automatic linguistic
processing in a German text-to-speech synthesis
system. In The ESCA Workshop on Speech Synthesis,
1991.

[17] M. Schröder and J. Trouvain. The German
Text-to-Speech Synthesis System MARY: A Tool for
Research, Development and Teaching. International
Journal of Speech Technology, 6(4):365–377, 2003.

[18] P. Taylor. Text-to-speech synthesis. Cambridge
University Press, 2009.

[19] UNESCO. Adult and Youth Literacy: National,
Regional and Global Trends. UNESCO Institute for
Statistics, 2013.

APPENDIX
A. TTS SLOT AND FILLER SOFTWARE DOCUMENTATION

This section provides a detailed documentation of TTS Slot and Filler documentation. It comprises of four parts: A.1
System Requirements, A.2 Dependencies, A.3 TTS Slot and Filler System Build and A.4 Adding Support for a New Language.
Sections A.2 and A.3 are partly based on the documentation made by Daniel van Niekerk, which can be found on the TTS
Slot and Filler Bambara Build repository on github: https://github.com/demitasse/ttslab bambara build.

A.1 System Requirements
The system must run on a case-sensitive operating system, therefore a Linux system is preferred. MacOS may also be

suitable, but only if the case-sensitive version was installed (the current default is case-insensitive).
The operating system used in for the build described in this documentation is 64-bit Ubuntu 16.04.2 LTS.

A.2 Dependencies
A number of dependencies is required for the system build. They include:

• Python 2.7 or higher

• Numpy

• Scipy

• SoX

• Normalize-audio

• Praat

• HTK 3.4.1

• Edinburgh Speech Tools 2.4

This section contains a step by step guide on how each dependency should be installed.

A.2.1 Python 2.7 or higher
Python comes with the majority of Linux based systems pre-installed. Python 2.7 was used for the build described in this

document, therefore using this version is recommended.

A.2.2 Numpy
Numpy is a Python library. It can be installed with Python installation tool called pip.
To get pip, run the following command from the command line:

$ sudo apt i n s t a l l python−pip

Once pip has been successfully installed, run the following command to install numpy:

$ pip i n s t a l l numpy

A.2.3 Scipy
Scipy is another Python library. To install scipy, run the following command from the command line:

$ pip i n s t a l l s c ipy

A.2.4 SoX
SoX is command line utility that can convert various formats of computer audio files to other formats, apply various effects

to these sound files and play and record audio files.
To install SoX, run from the command line:

$ sudo apt−get i n s t a l l sox

A.2.5 Normalize-audio
Normalize-audio is a tool for adjusting the volume of audio files to a standard level. To install it, run the following command

from the command line:

$ sudo apt−get i n s t a l l normal ize−audio

Verify the installation by typing:

$ normal ize−audio −−ve r s i on

This should result in a message similar to below:

normal ize 0 . 7 . 7
Copyright (C) 2005 Chris V a i l l
This i s f r e e so f tware ; s ee the source for copying c o n d i t i o n s . There i s NO
warranty ; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
This copy o f normal ize i s compiled with the f o l l o w i n g l i b r a r i e s :

MAD a u d i o f i l e

For more information on normalize-audio, visit http://normalize.nongnu.org.

A.2.6 Praat
Praat is a software used for, among others, speech analysis and speech synthesis.
To install it, run the following command from the command line:

$ sudo apt−get i n s t a l l praat

Verify the installation by running praat:

$ praat

This command should launch the praat application.

A.2.7 HTK 3.4.1
The Hidden Markov Model Toolkit (HTK) is a portable toolkit for building and manipulating hidden Markov models.
Download the Stable Release (3.4.1) HTK source code for Linux from the following link:

http:// htk.eng.cam.ac.uk/ download.shtml

To do this, you will need to register with your e-mail address. Once the tarball has been downloaded, move it to the
dependencies directory earlier created, untar and clean up:

$ mv ˜/Downloads/HTK−3 . 4 . 1 . ta r . gz .
$ ta r xvf HTK−3 . 4 . 1 . ta r . gz
$ rm HTK−3 . 4 . 1 . ta r . gz
$ cd htk

Before HTK can be installed, some dependencies need to be satisfied. To do this, run the following command:

$ sudo apt−get i n s t a l l l i b c6−dev−i 386 l ibx11−dev : i386 l ibx11−dev

Now, configuration can be run:

$. / c o n f i g u r e

Before building, one file needs to be updated, as there appears to be an error in one of the Make files included in HTKTools.
Open the Makefile file residing in ~/Documents/tts/dependencies/htk/HTKTools/ and on line 77 change the 8 spaces before
the if statement into one tab. Save and close the file. Then, from the location ~/Documents/tts/dependencies/htk run:

$ make a l l
$ make i n s t a l l

The second command may have to be run with sudo.

A.2.8 Edinburgh Speech Tools 2.4
The Edinburgh Speech Tools Library is a collection of C++ classes, functions and related programs for manipulating the

sorts of objects used in speech processing.
Download the speech-tools-2.4 from the following link:

http:// www.cstr.ed.ac.uk/ downloads/ festival/ 2.4

Once the tarball has been downloaded, move it to the dependencies directory earlier created, untar and clean up:

$ mv ˜/Downloads/ spee ch too l s −2.4− r e l e a s e . ta r . gz .
$ ta r xvf spe e ch too l s −2.4− r e l e a s e . ta r . gz
$ rm speech too l s −2.4− r e l e a s e . ta r . gz
$ cd speech−t o o l s

Edinburgh Speech Tools also needs a dependency to be installed. To install it, run:

$ sudo apt−get i n s t a l l l i b ncu r s e s 5−dev l ibncursesw5−dev

Now you can configure, make and install:

$. / c o n f i g u r e
$ make
$ make i n s t a l l

Now you’re done! All dependencies have been installed for the TTS Slot and Filler system.

A.3 TTS Slot and Filler System Build
This section assumes that all dependencies needed for the built have already been installed. The same directory structure

as described in the Dependencies section is assumed. For the list of dependencies and their installation guide, please refer to
Appenddix A.2.

A.3.1 Source code download
In this documentation, the base directory will be the tts directory, which was created during the installation of dependencies.

Therefore, before doing anything else, first move to the tts directory:

$ cd ˜/Documents/ t t s

To download the TTS software source code, git is required. If git is not installed, install it from the command line:

$ sudo apt−get i n s t a l l g i t

Git clone ttslab, ttslabdev and tts_bambara_build from the following repositories:

$ g i t c l one https : // g i t h u b . com/ j k l e c z a r / t t s l a b . g i t
$ g i t c l one https : // g i t h u b . com/ j k l e c z a r / t t s l a b d e v . g i t
$ g i t c l one https : // g i t h u b . com/ j k l e c z a r / t t s l a b b a m b a r a b u i l d

Now, in the tts directory the following directories should be pressent:

t t s l a b
t t s l abdev
t t s l ab bambara bu i ld

A.3.2 Setting paths to the TTS software
Paths must be created for ttslab and ttslabdev directories by adding the following lines to the .bashrc file:

export TTSLAB ROOT=˜/Documents/ t t s / t t s l a b
export TTSLABDEV ROOT=˜/Documents/ t t s / t t s l abdev

Note that these paths assume the directory structure used in this documentation.
Additionally, the following paths need to be added to PYTHONPATH. To do this, add the following two lines at the end

of the .bashrc file:

export PYTHONPATH=$TTSLABDEV ROOT/modules :$TTSLAB ROOT:$PYTHONPATH
export PATH=$TTSLABDEV ROOT/ s c r i p t s :$PATH

Once this is done, restart the Terminal for the changes to take effect.

A.3.3 Compiling text-processing front-end
Before Bambara build can be done, first text-processing front-end must be compiled. If ttslab and ttslabdev have been

setup correctly (as described above), the pronunciation resources can be compiled. This will create the voice definition of the
language.

To do this, change to the ttslab directory in ~/Documents/tts/ttslab_bambara_build and run make.sh:

$ cd ˜/Documents/ t t s / t t s l ab bambara bu i ld / t t s l a b
$. / make . sh

Once done, the directory structure should look as follows:

.
|−− data
| ‘−− pronun
| |−− addendum . d i c t
| ‘−− main . r u l e s
|−− f rontend . vo i c e . p i c k l e
|−− f rontend . wordus . vo i c e . p i c k l e
|−− g2p . p i c k l e
|−− make . sh
|−− phoneset . p i c k l e
|−− pronunaddendum . p i c k l e
‘−− pronundict . p i c k l e

This has taken the Bambara language definition in TTSLAB_ROOT/ttslab/voices/bambara_default.py, the simple pronun-
ciation dictionary and letter to sound rules in BAMBARA_BUILD/ttslab/data/pronun and compiled a voice definition BAM-

BARA_BUILD/ttslab/frontend.wordus.voice.pickle.

A.3.4 Setting paths to dependencies
The path to the HTK and Edinburgh Speech Tools binaries must be set in paths.sh, residing in

~/Documents/tts/ttslab_bambara_build. Please edit this file to set these paths.
Following the directory structure in this documentation, the paths are set as follows:

HTK BIN=$HOME/Documents/ t t s / dependenc ies /htk/HTKTools
EST BIN=$HOME/Documents/ t t s / dependenc ies / s p e e c h t o o l s / bin

A.3.5 Building the system
The directory BAMBARA_BUILD/recordings/chunked contains a wavs directory containing an audio file (with basename

matching) for every entry in utts.data (residing in BAMBARA_BUILD/recordings/chunked). Audio files need to be in RIFF
Wave format (any bitrate and samplerate) and utts.data in UTF-8 text.

In the Bambara build source code that was downloaded from github, the recordings and utts.data file have already been
set up, so setup_alignments.sh can be run from the BAMBARA_BUILD root directory:

. / se tup a l i gnments . sh

This should create a build directory and process the audio files appropriately (downsampling and energy normalisation)
and copy the etc configuration directory for this build.

Once the build directory is constructed, the alignment process can be done (a full path to the voice front-end file is
required):

. / do al ignments . sh $PWD/ t t s l a b / f rontend . wordus . vo i c e . p i c k l e

This should add the following subdirectories in build: halign, textgrids and utts. Next, feature extraction for the
database can be done:

. / do us ca ta l ogue . sh $PWD/ t t s l a b / f rontend . wordus . vo i c e . p i c k l e f e a t s

Next, compile the database:

. / do us ca ta l ogue . sh $PWD/ t t s l a b / f rontend . wordus . vo i c e . p i c k l e ca ta logue

This should result in the file unitcatalogue.pickle being created in build directory. This file should have a symbolic link
in BAMBARA_BUILD/ttslab/data allowing the following to be executed in the BAMBARA_BUILD/ttslab directory:

cd t t s l a b
t t s l ab make vo i c e . py wordus

resulting in the file BAMBARA_BUILD/ttslab/wordus.voice.pickle.

A.3.6 Troubleshooting
If any of the above steps fail, it is likely that one of the dependencies has not been installed correctly or that paths have

not been set as described in this documentation. Double-check the paths and installations. After any possible fixes, run the
following commands before attempting to build again:

. / se tup a l i gnments . sh c l ean

. / do al ignments . sh c l ean

. / do us ca ta l ogue . sh c l ean

Once the build has been cleaned, start the build from the beginning:

. / se tup a l i gnments . sh

. / do al ignments . sh $PWD/ t t s l a b / f rontend . wordus . vo i c e . p i c k l e

. / do us ca ta l ogue . sh $PWD/ t t s l a b / f rontend . wordus . vo i c e . p i c k l e f e a t s

. / do us ca ta l ogue . sh $PWD/ t t s l a b / f rontend . wordus . vo i c e . p i c k l e ca ta logue

A.3.7 Testing
The system can be tested in Python in the following way:

encoding : utf−8
import t t s l a b

vo i c e = t t s l a b . f r o m f i l e (”wordus . vo i c e . p i c k l e ”)
utt = vo i c e . s y n t h e s i z e (u ’ Banbara ’ , ”text−to−wave ”)
utt [”waveform ”] . wr i t e (” t e s t . wav”)

The first string in voice.synthesise can be replaced with a sentence consisting of any words residing in
BAMBARA_BUILD/recordings/chunked/utts.data file. Running this script results in a .wav file, containing an audio recording
of the sentence.

A.4 Adding Support for a New Language
To create a TTS Slot and Filler system for a new language of choice, a number of steps must be fulfilled. They include:

• Step 1: Creating a description of the language in terms of phone pronunciation

• Step 2: Creating a set of recordings covering the chosen domain of the application

• Step 3: Creating an accompanying text file for the recordings

This section gives a detailed overview of how each step should be executed with the example of the Twi language.

A.4.1 Step 1: Description of the Language
All supported language descriptions reside in the ttslab toolkit, which was cloned from github in the first step of the TTS

System Build section. To see all supported languages, change to the following directory:

$ cd ˜/Documents/ t t s / t t s l a b / t t s l a b / v o i c e s
$ l s

In the Bambara build described in the TTS System Build section, the bambara_default.py file was used. A similar file for
the language of Twi must be created. To do this, the bambara_default.py file will be copied and adjusted to the language of
Twi:

$ cp bambara default . py t w i d e f a u l t . py

First, the name of the class needs to be changed from BambaraPhoneset to TwiPhoneset. The phoneset of the language is
defined between lines 17 and 89 in the variables self.features, self.phones and self.map. Each one of these will have to
be adjusted for the language of Twi.

The self.features variable is the simplest one to adjust, as it only provides some basic features of the language. For the
Bambara language, it has been defined as:

s e l f . f e a t u r e s = { ”name” : ”Bambara Phoneset ” ,
” s i l e n c e p h o n e ” : ”pau ” ,
”c lo sure phone ” : ”pau c l ”
}

The only thing that needs to be changed in this variable for the language of Twi is the name:

s e l f . f e a t u r e s = { ”name” : ”Twi Phoneset ” ,
” s i l e n c e p h o n e ” : ”pau ” ,
”c lo sure phone ” : ”pau c l ”
}

The self.phones variable contains the description of phones. In order to create it correctly, the phoneset of the Twi
language is needed. It can be either provided by a native speaker or obtained from other resources. For the purpose of this
example, the vowels and consonants provided on http:// www.omniglot.com/ writing/ akan.htm are used:

Figure 4: Vowels of the Twi language

Figure 5: Consonants of the Twi language

If we compare the list of the Twi vowels to the Bambara ones, they are all the same, thus they can be left unchanged.
There are, however, a number of different consonants, which need to be added. To get started, all missing Twi consonants
can be added without any description values and unnecessary Bambara language consonants should be removed, leaving the
rest unchanged:

#consonants
”b” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”manner plos ive ” , ” p l a c e b i l a b i a l ” ,

”vo iced ”]) ,
”d” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”manner plos ive ” , ” p l a c e a l v e o l a r ” ,

”vo iced ”]) ,
”dw” : s e t ([]) ,
” f ” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”m a nn e r f r i c a t i v e ” ,

” p l a c e l a b i o d e n t a l ”]) ,
”g ” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”manner plos ive ” , ” p l a c e v e l a r ” ,

”vo iced ”]) ,
”gy ” : s e t ([]) ,
”h” : s e t ([”consonant ” , ”m an ne r f r i c a t i v e ” , ” p l a c e g l o t t a l ”]) ,
”hw” : s e t ([]) ,
”hy ” : s e t ([]) ,
”k ” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”manner plos ive ” , ” p l a c e v e l a r ”]) ,
”kw” : s e t ([]) ,
”ky ” : s e t ([]) ,
” l ” : s e t ([” c l a s s s o n o r a n t ” , ” c l a s s c o n s o n a n t a l ” , ”consonant ” ,

”manner approximant ” , ”manner l a t e ra l ” , ” p l a c e a l v e o l a r ” , ”vo iced ”]) ,
”m” : s e t ([” c l a s s s o n o r a n t ” , ” c l a s s s y l l a b i c ” , ” c l a s s c o n s o n a n t a l ” , ”consonant ” ,

”manner nasal ” , ” p l a c e b i l a b i a l ” , ”vo iced ”]) ,
”n” : s e t ([” c l a s s s o n o r a n t ” , ” c l a s s s y l l a b i c ” , ” c l a s s c o n s o n a n t a l ” , ”consonant ” ,

”manner nasal ” , ” p l a c e a l v e o l a r ” , ”vo iced ”]) ,
”ng ” : s e t ([]) ,
”nw” : s e t ([]) ,
”ny ” : s e t ([]) ,
”p” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”manner plos ive ” ,

” p l a c e b i l a b i a l ”]) ,
”r ” : s e t ([” c l a s s s o n o r a n t ” , ” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”m a n n e r t r i l l ” ,

” p l a c e a l v e o l a r ” , ”vo iced ”]) ,
”s ” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”m a nn e r f r i c a t i v e ” ,

” p l a c e a l v e o l a r ”]) ,
”t ” : s e t ([” c l a s s c o n s o n a n t a l ” , ”consonant ” , ”manner plos ive ” ,

” p l a c e a l v e o l a r ”]) ,
”tw ” : s e t ([]) ,
”w” : s e t ([” c l a s s s o n o r a n t ” , ”consonant ” , ”manner approximant ” , ” p l a c e l a b i a l ” ,

” p l a c e v e l a r ” , ”vo iced ”])

Each of the new phones must be described in as much detail as possible to determine how they are pronounced. This helps
with the final quality of the recordings and their fluency. There are several categories with different values that can be used
for this description:

1. Letter Type

• Vowel

• Consonant

2. Phone Class

• Sonorant: in phonetics and phonology, a sonorant is a speech sound that is produced with continuous, non-turbulent
airflow in the vocal tract. Examples: l, n, r

• Consonantal: a consonantal speech sound is the opposite of sonorant. Examples: t, p, k.

3. Manner of pronunciation4

• Plosive: consonants, where air is blocked at the place of articulation to accumulate pressure and it is then released
in one instant. Examples: d, b, k.

• Fricative: consonants, where vocal apparatus is used to partially block the airflow at the place of articulation in
such a way that only some air passes through. Examples: s, sh.

• Approximant: consonants where the air flows smoothly through the vocal apparatus so that very little friction is
created. Examples: y, r.

• Lateral: consonants, where the airflow passes to the sides (of the tongue, usually) when pronouncing them. Exam-
ples: l.

• Nasal: consonants, where you let air out of your nose as you pronounce them. Examples: m, n.

• Trill: consonants, where at the place of articulation, a series of repeated bursts is made. Examples: repeated r.

4. Place of pronunciation5

• Bilabial: consonant sounds produced by using both lips together.

• Labial: consonants articulated by using both the tongue and the upper lip.

• Labiodental: consonants articulated by using both the lower lip and the upper front teeth.

• Alveolar: consonants pronounced near the alveolar ridge which is the area lying between the upper front teeth and
the palate.

• Velar: consonants pronounced at the back of the palate.

• Glottal: consonanced pronounced at the back of the throat.

Following the guidelines outlined above, the missing consonants can be now described in terms of letter type, phone class,
manner and place of pronunciation:

”dw” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner plos ive ” , ” p l a c e l a b i a l ”]) ,
”gy ” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner plos ive ” , ” p l a c e l a b i a l ”]) ,
”hw” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”m ann e r f r i c a t i v e ” ,

” p l a c e g l o t t a l ”]) ,
”hy ” : s e t ([”consonant ” , ” c l a s s s o n o r a n t ” , ”m an ne r f r i c a t i v e ” , ” p l a c e a l v e o l a r ”]) ,
”kw” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner plos ive ” , ” p l a c e v e l a r ”]) ,
”ky ” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner plos ive ” ,

” p l a c e a l v e o l a r ”]) ,
”ng ” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner nasal ” , ” p l a c e l a b i a l ”]) ,
”nw” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner nasal ” ,

” p l a c e l a b i o d e n t a l ”]) ,
”ny ” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner nasal ” ,

” p l a c e l a b i o d e n t a l ”]) ,
”tw ” : s e t ([”consonant ” , ” c l a s s c o n s o n a n t a l ” , ”manner plos ive ” ,

” p l a c e a l v e o l a r ”]) ,

Having the consonants defined and described, the self.map variable can be adjusted. Here, the special characters such
as ε should be mapped onto a regular character - in this case, it will be E. A mapping must be made for all phones in the
phoneset. The final mapping is as follows:

s e l f .map = { ”pau ” : ”pau ” ,
”pau c l ” : ”pau c l ” ,
”? ” : ”pau gs ” ,

4Source: http://www.learnlanguagesonyourown.com/manners-of-articulation.html
5Source: http://www.learnlanguagesonyourown.com/places-of-articulation.html

”a ” : ”a ” ,
”e ” : ”e ” ,
”ε” : ”E” ,
” i ” : ” i ” ,
”o ” : ”o ” ,
”ω” : ”O” ,
”u” : ”u” ,
”b” : ”b” ,
”d” : ”d” ,
”dw” : ”dw” ,
” f ” : ” f ” ,
”g ” : ”g ” ,
”gy ” : ”gy ” ,
”h” : ”h” ,
”hw” : ”hw” ,
”hy ” : ”hy ” ,
” j ” : ” j ” ,
”k ” : ”k ” ,
”kw” : ”kw” ,
”ky ” : ”ky ” ,
” l ” : ” l ” ,
”m” : ”m” ,
”n” : ”n” ,
”ng ” : ”ng ” ,
”nw” : ”nw” ,
”ny ” : ”ny ” ,
”p” : ”p” ,
”r ” : ”r ” ,
”s ” : ”s ” ,
”z ” : ”z ” ,
”t ” : ”t ” ,
”tw ” : ”tw ” ,
”w” : ”w”
}

Now that all the rules have been set, a new build can be prepared for the language of Twi. To get started, we will work
with the original build of Bambara and adjust it to the language of Twi. Just as in Bambara build, git clone the source code
from github and rename the old build to something else for the time being:

$ cd ˜/Documents/ t t s
$ mv tt s lab bambara bu i ld t t s l ab bambara bu i ld o ld
$ g i t c l one https : // g i t h u b . com/ j k l e c z a r / t t s l a b b a m b a r a b u i l d

Once done, rename the newly downloaded ttslab_bambara_build to ttslab_twi_build:

$ mv tt s lab bambara bu i ld t t s l a b t w i b u i l d

Since the Twi language description has already been added to ttslab, we can use it in the Twi build by editing the make.sh

file residing in ~/Documents/tts/ttslab_twi_build/ttslab. The file should be edited as follows, conforming to the language
definition we have already created:

#! / bin /bash

tts lab make phoneset . py t w i d e f a u l t TwiPhoneset
tts lab make g2p . py
t t s lab make pronund ic t s . py
t t s l ab make vo i c e . py f rontend
t t s l ab make vo i c e . py wordusfrontend
t t s l ab make vo i c e . py wordus

One more file needs to be adjusted. In ~/Documents/tts/ttslab_twi_build/ttslab/data/pronun there is a file called
addendum.dict specifying the spelling of several words in the language. At the moment the file contains words from the
Bambara language. It should be changed to give several examples of the Twi language, for instance:

PAUSE pau
ra in n s u o
no d a a b i

heavy d e n e
temperature b O b r E E
yesterday E n o r a
Monday E d w o a d a
Tuesday E b e n a d a
Wednesday w u k u a d a
Friday e f i a d a

Once the file has been saved, proceed to Step 2.

A.4.2 Step 2: Recordings for Chosen Domain
Before creating the recordings, a specific target application or domain should be determined. Then, an example script

containing a set of sentences should be designed, ensuring that the sentences cover the domain as much as possible. In some
cases, the content will vary - for example, things such as dates, numbers or other values that can be variable. These variations
should also be included in the recordings.

It is preferable that the sentences of the script are recorded in the manner of one sentence per recording, in order to preserve
the prosodic features of the utterances. The variable content may be recorded separately - for instance, one recording per
each date or number.

If possible, all recordings should be created by one person in constant conditions, preferably all in one session. Background
noise should be avoided in order to ensure clarity and quality of the final output of the system. All sentences and words should
be spoken quite slowly, at a comfortable tempo. In order to increase the quality of the recordings, audio software may be
used in order to reduce noise and normalize the loudness across the recordings. For the purpose of Twi recordings, Audacity
software was used.

For the use case of Meteo readings in the language of Twi, a total of 53 recordings were made. They included sentences
describing the weather conditions, voice commands allowing choice of language or location, as well as extra recordings for
variable content such as days of the week, numbers and different weather conditions.

The TTS Slot and Filler software at the moment supports the RIFF Ware format (.wav), thus all recordings should be
made or converted into that format. When the recordings have been created, they should be placed in
~/Documents/tts/ttslab_twi_build/recordings/chunked/wavs. Make sure that all the recordings from the Bambara build
are removed before placing the Twi recordings there.

A.4.3 Step 3: Text File for the Recordings
The final step in adding support for a the Twi language is creating a file containing the contents of all recordings that were

just added. The file is called utts.data and resides in ~/Documents/tts/ttslab_twi_build/recordings/chunked/ and takes
the format of one recording description per line:

(RecordingName ”Content o f the r e co rd ing ”)

Since at the moment this file describes all Bambara recordings, it should be adjusted according to the Twi recordings. In
total, there should be 53 lines in this file, as there are 53 recordings. An important thing to note is that all spellings of the
words should conform to the phoneset defined in Step 1.

Once utts.data file has been updated with the correct data and saved, the build for the Twi language can be created by
following steps described in A.3.5 in the TTS Slot and Filler System Build section of this appendix.

B. RECORDINGS FOR THE TWI LANGUAGE
εBenada
εdwoada
εhai
εhum
εnan
εnora
εnoraakyi
εnum
εyaara
awω
awωpaa
Baako
brεε
Mea one na hunu ewiem nsakrayε aa εwω Kumasi
Mea one na hunu ewiem nsakrayε aa εwω Tamale
Daabi
Mea one na hunu εnora akyi ewiem nsakrayε aa na εwω Tamale
dene
Edu

Efiada
Hwee
ωhyew
ωhyewpaa
Nyε ne Kwan so nono. San yε no fofroω
Kwasiada
ωkyena
ωkyenaakyi
Medase
Memeneda
Mmeεnsa
Mmienu
Nkron
nnε
Nsia
Nson
nsuo
Nwωtwe
Na nsuo no ano yε den
Nsuden bεtω wω Tamale nnε
nsuo rentω wω Tamale ωkyena
ωhyew paa bεba Tamale ωkyena akyi
Sε wo pε twi aa mea one
Mea one na hunu εnora ewiem nsakrayε aa εwω Tamale”)
Mea one na hunu nnε ewiem nsakrayε aa εwω Tamale
Mea one na hunu ωkyena ewiem nsakrayε aa εwω Tamale
Wukuada
Yawoada
Nsuo antω wω Tamale εnnora
εnnora nsuo tωω wω Tamale
Na εnnora bωbrεε wω Tamale yε hye
Me pa wo kyew yi numeri yi mu na toaso
εde wo bεsan akω napωso napωso
Medase

C. SPEECH SYNTHESIS FOR FEEDBACK
Synthesis 1.
Nsuo bεtω wω Tamale nnε.
There will be rain in Tamale today.
Synthesis 2.
Nsuo bεtω wω Kumasi nnε.
There will be rain in Kumasi today.
Synthesis 3.
Nsuo bεtω wω Kumasi ωkyena.
There will be rain in Kumasi tomorrow.
Synthesis 4.
Me pa wo kyew mea Mmeεnsa.
Please press 3.
Synthesis 5.
Nsuo rentω wω tamale nnε.
There will be no rain in Tamale today.
Synthesis 6.
Me bεsan akω Kumasi ωkyena akyi.
I will return to Kumasi the day after tomorrow.
Synthesis 7.
Me bεsan akω Tamale na ωhyew paa bεba Kumasi ωkyena.
I will return to Tamale because it will be very hot in Kumasi tomorrow.
Synthesis 8.
Me pa wo kyew, toaso.
Please continue.

